995 resultados para Plants reproduction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis that dairy cows partially suckling their calves would ovulate following removal of calves when restored to positive energy balance by a short-term increase in supplementation was investigated in 65 crossbred cows. Five treatments (T1, T2, T3, T4, and T5) that differed in the amount of total concentrate fed from calving to week 24 were involved. Calves were allowed to suck residual milk to 12 weeks of age. Energy balance was estimated by measuring intake, milk yield and organic matter digestibility. The occurrence of ovulation was determined by the analysis of milk progesterone (P4) concentration. Four groups that were receiving additional supplementation were restored to positive energy balance, while the control group (T I) remained in negative energy balance. The percentage of cows ovulating was 36%, 58%, 92%, 90% and 60% for T1, T2, T3, T4 and T5, respectively (P = 0.026). Comparison of the timing of ovulation for combined results from T1+T2 and T3+T4+T5 estimated mean time to fail to ovulate as 110 +/- 9.0 and 87 +/- 7.6 days, respectively (p = 0.023). The percentage of the cows showing oestrus was 9%, 8%, 33%, 40% and 40% for T1, T2, T3, T4 and T5, respectively (P = 0.197). Short-term increases in supplementation are unlikely to be an attractive means of reducing calving intervals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract 13.12.1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike most domestic livestock species, sheep are widely known as an animal with marked seasonality of breeding activity. The annual cycle of daily photoperiod has been identified as the determinant factor of this phenomenon, while environmental temperature, nutritional status, social interactions, lambing date and lactation period are considered to modulate it. The aim of this paper is to review the current state of knowledge of the reproductive seasonality in sheep. Following general considerations concerning the importance of seasonal breeding as a reproductive strategy for the survival of species, the paper describes the manifestations of seasonality in both the ram and the ewe. Both determinant and modulating factors are developed and special emphasis is given to the neuroendocrine base of photoperiodic regulation of seasonal breeding. Other aspects such as the role of melatonin, the involvement of thyroid hormones and the concept of photorefractoriness are also reviewed. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the important themes in any discussion concerning the application of haploids in agricultural biotechnology or elsewhere is the role of Intellectual Property Rights (IPR). This term covers both the content of patents and the confidential expertise, usually related to methodology and referred to as "Trade Secrets". This review will explain the concepts behind patent protection, and will use the international patent databases to analyse the content of these patents and trends over the last 20 years. This analysis from regions including North America, Europe, and Asia reveals a total of more than 30 granted patents and a larger number of applications. The first of these patents dates from 1986, and although the peak of activity was in the late 1990s, there has been continuous interest to the present day. The subject matter of these patents and applications covers methods for anther and pollen culture, ovule culture, the use of specific haploid-inducing genes, the use of haploids as transformation targets, and the exploitation of genes that regulate embryo development. The species mentioned include cereals, vegetables, flowers, spices and trees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Darwin studied domesticated plants and animals to try to understand the causes of variability. He observed that variation is greatest in the part of the plant most used by humans, but explanations of the causes of this variation had to await the discovery of Mendelian genetics and subsequent advances in the understanding of the structure and mode of action of genes, from the one gene, one enzyme hypothesis to the role of transcriptional regulators. Darwin credited his studies on domesticated plants and animals with demonstrating to him the power of selection. He recognized two forms of human-mediated selection, methodical and unconscious, in addition to natural selection. Selection leaves a signature in the form of reduced diversity in genes that have been the targets of selection and in 'hitch-hiking' genomic regions linked to the target genes. These so-called selective sweeps may serve now to identify genes targeted by selection in early stages of domestication and thus provide a possible guide to crop improvement in future. (C) 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161, 203-212.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flowering is generally considered to be advanced by water deficits in many woody perennial species. A long-standing paradigm being that as a plant senses severe environmental conditions resources are diverted away from vegetative growth and towards reproduction before death. It is demonstrated that in Rhododendron flowering is promoted under water deficit treatments. However, the promotion of flowering is not achieved via all increase in floral initiation, but through separate developmental responses. If regulated deficit irrigation (RDI) is imposed prior to the time of initiation, fewer vegetative nodes are formed before the apical meristems switch to floral initiation, and chronologically, floral initiation occurs earlier. Both RDI and partial rootzone drying (PRD) treatments stimulate the development of more flowers Oil each inflorescence if the treatments are continued after the plant has undergone floral initiation. However, floral initiation is inhibited by soil water deficits. If the soil water deficit continues beyond the stages of floral development then anthesis call occur prematurely oil the fully formed floral buds without a need for a winter chilling treatment. It is hypothesised that inhibition of floral initiation in plants experiencing severe soil water deficits results from the inhibitory action Of ABA transportation to the apical meristem from stressed roots. It is demonstrated that ABA applications to well-watered Rhododendron inhibit floral initiation. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The release of genetically modified plants is governed by regulations that aim to provide an assessment of potential impact on the environment. One of the most important components of this risk assessment is an evaluation of the probability of gene flow. In this review, we provide an overview of the current literature on gene flow from transgenic plants, providing a framework of issues for those considering the release of a transgenic plant into the environment. For some plants gene flow from transgenic crops is well documented, and this information is discussed in detail in this review. Mechanisms of gene flow vary from plant species to plant species and range from the possibility of asexual propagation, short- or long-distance pollen dispersal mediated by insects or wind and seed dispersal. Volunteer populations of transgenic plants may occur where seed is inadvertently spread during harvest or commercial distribution. If there are wild populations related to the transgenic crop then hybridization and eventually introgression in the wild may occur, as it has for herbicide resistant transgenic oilseed rape (Brassica napus). Tools to measure the amount of gene flow, experimental data measuring the distance of pollen dispersal, and experiments measuring hybridization and seed survivability are discussed in this review. The various methods that have been proposed to prevent gene flow from genetically modified plants are also described. The current "transgenic traits'! in the major crops confer resistance to herbicides and certain insects. Such traits could confer a selective advantage (an increase in fitness) in wild plant populations in some circumstances, were gene flow to occur. However, there is ample evidence that gene flow from crops to related wild species occurred before the development of transgenic crops and this should be taken into account in the risk assessment process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, the pharmaceutical ibuprofen (IB), a non-steroidal anti-inflammatory drug, primarily functions by reversibly inhibiting the cyclooxygenase (COX) pathway in the synthesis of eicosanoids (e.g. prostaglandins). Previous studies suggest that IB may act in a similar manner to interrupt production of eicosanoids reducing reproduction in the model crustacean Daphnia magna. On this basis withdrawal of IB should lead to the recovery of D. magna reproduction. Here we test whether the effect of IB is reversible in D. magna, as it is in mammals, by observing reproduction recovery following chronic exposure. D. magna (5-days old) were exposed to a range of IB concentrations (0, 20, 40 and 80 mg l(-1)) for 10 days followed by a 10 day recovery period in uncontaminated water. During the exposure period, individuals exposed to higher concentrations produced significantly fewer offspring. Thereafter, IB-stressed individuals produced offspring faster during recovery, having similar average population growth rates (PGR) (1.15-1.28) to controls by the end of the test. It appears that maternal daphnids are susceptible to IB during egg maturation. This is the first recorded recovery of reproduction in aquatic invertebrates that suffered reproductive inhibition during chronic exposure to a chemical stressor. Our results suggest a possible theory behind the compensatory fecundity that we referred to as 'catch-up reproduction'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accidental introduction of the spiralling whitefly, Aleurodicus dispersus Russell (Homoptera: Aleyrodidae) to Seychelles in late 2003 is exploited during early 2005 to study interactions between A. dispersus, native and exotic host plants and their associated arthropod fauna. The numbers of A. dispersus egg spirals and pupae, predator and herbivore taxa were recorded for eight related native/exotic pairs of host plants found on Mahe, the largest island in Seychelles. Our data revealed no significant difference in herbivore density (excluding A. dispersus) between related native and exotic plants, which suggests that the exotic plants do not benefit from 'enemy release'. There were also no differences in predator density, or combined species richness between native and exotic plants. Together these data suggest that 'biotic resistance' to invasion is also unlikely. Despite the apparent lack of differences in community structure significantly fewer A. dispersus egg spirals and pupae were found on the native plants than on the exotic plants. Additional data on A. dispersus density were collected on Cousin Island, a managed nature reserve in which exotic plants are carefully controlled. Significantly higher densities of A. dispersus were observed on Mahe, where exotic plants are abundant, than on Cousin. These data suggest that the rapid invasion of Seychelles by A. dispersus may largely be due to the high proportion of plant species that are both exotic and hosts of A. dispersus; no support was found for either the 'enemy release' or the 'biotic resistance' hypotheses.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the recurring themes in any discussion concerning the application of genetic transformation technology is the role of Intellectual Property Rights (IPR). This term covers both the content of patents and the confidential expertise, usually related to methodology and referred to as “Trade Secrets”. This review will explain the concepts behind patent protection, and will discuss the wide-ranging scope of existing patents that cover all aspects of transgenic technology, from selectable markers and novel promoters to methods of gene introduction. Although few of these patents have any significant commercial value, there are a small number of key patents that may restrict the “freedom to operate” of any company seeking to exploit the methods. Over the last twenty years, these restrictions have forced extensive cross-licensing between ag-biotech companies and have been one of the driving forces behind the consolidation of these companies. Although such issues are often considered to be of little interest to the academic scientist working in the public sector, they are of great importance in any debate about the role of “public-good breeding” and of the relationship between the public and private sectors.