966 resultados para Plant species diversity
Resumo:
A hydrophobic cuticle is deposited at the outermost extracellular matrix of the epidermis in primary tissues of terrestrial plants. Besides forming a protective shield against the environment, the cuticle is potentially involved in several developmental processes during plant growth. A high degree of variation in cuticle composition and structure exists between different plant species and tissues. Lots of progress has been made recently in understanding the different steps of biosynthesis, transport, and deposition of cuticular components. However, the molecular mechanisms that underlie cuticular function remain largely elusive.
Resumo:
Tropical forests are species-rich reserves for the discovery and development of antimicrobial drugs. The aim of this work is to investigate the in vitro antimicrobial potential of Amazon plants found within the National Institute on Amazon Research's Adolpho Ducke forest reserve, located in Manaus, state of Amazonas, Brazil. 75 methanol, chloroform and water extracts representing 12 plant species were tested for antimicrobial activity towards strains of Mycobacterium smegmatis, Escherichia coli, Streptococcus sanguis, Streptococcus oralis, Staphylococcus aureus and Candida albicans using the gel-diffusion method. Active extracts were further evaluated to establish minimum inhibitory concentrations (MIC) and antimicrobial profiles using bioautography on normal-phase thin-layer chromatography plates. Diclinanona calycina presented extracts with good antimicrobial activity and S. oralis and M. smegmatis were the most sensitive bacteria. D. calycina and Lacmellea gracilis presented extracts with the lowest MIC (48.8 µg/ml). D. calycina methanol and chloroform leaf extracts presented the best overall antimicrobial activity. All test organisms were sensitive to D. calycina branch chloroform extract in the bioautography assay. This is the first evaluation of the biological activity of these plant species and significant in vitro antimicrobial activity was detected in extracts and components from two species, D. calycina and L. gracilis.
Resumo:
Pseudomonas fluorescens strain CHA0 is able to protect plants against a variety of pathogens, notably by producing the two antimicrobial compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). The regulation of the expression of these compounds is affected by many biotic factors, such as fungal pathogens, rhizosphere bacteria as well as plant species. Therefore, the influence of some plant phenolic compounds on the expression of DAPG and PLT biosynthetic genes has been tested using GFP-based reporter, monitored by standard fluometry and flow cytometry. In situ experiments were also performed with cucumber plants. We found that several plant metabolites such as IAA and umbelliferone are able to modify significantly the expression of DAPG and PLT. The use of flow cytometry with autofluorescents proteins seems to be a promising method to study rhizobacteria-plant interactions.
Resumo:
Natural products have long been providing important drug leads for infectious diseases. Leishmaniasis is a protozoan parasitic disease found mainly in developing countries, and it has toxic therapies with few alternatives. Fungal infections have been the main cause of death in immunocompromised patients and new drugs are urgently needed. In this work, a total of 16 plant species belonging to 11 families, selected on an ethnopharmacological basis, were analyzed in vitro against Leishmania (L.) chagasi, Leishmania (L.) amazonensis, Candida krusei, and C. parapsilosis. Of these plant species, seven showed antifungal activity against C. krusei, five showed antileishmanial activity against L. chagasi and four against L. amazonensis, among them species of genus Plectranthus. Our findings confirm the traditional therapeutic use of these plants in the treatment of infectious and inflammatory disorders and also offer insights into the isolation of active and novel drug prototypes, especially those used against neglected diseases as Leishmaniasis.
Resumo:
Canine American visceral leishmaniasis and American cutaneous leishmaniasis (ACL) cases have been recorded in Espírito Santo do Pinhal. The aim of this study was to gather knowledge of the sand fly community and its population ecology within the municipality. Captures were made weekly over a period of 15 months in the urban, periurban and rural areas of the municipality, using automatic light traps. A total of 5,562 sand flies were collected, comprising 17 species. The most abundant species were Nyssomyia whitmani and Pintomyia pessoai in the rural area, Lutzomyia longipalpis and Ny. whitmani in the periurban area and Lu. longipalpis in the urban area. The highest species richness and greatest index species diversity were found in the rural area. The similarity index showed that urban and periurban areas were most alike. Lu. longipalpis was found in great numbers during both dry and humid periods. The presence of dogs infected with Leishmania infantum chagasi in the urban area indicates a high risk for the establishment of the disease in the region. A high abundance of Ny. whitmani and Pi. pessoai in the rural and periurban areas indicates the possibility of new cases of ACL occurring in and spreading to the periurban area of Espírito Santo do Pinhal.
Resumo:
Different arbuscular mycorrhizal (AMF) fungal taxa have a differential effect on the growth of co-existing plant species. This means that in order to fully understand the role of these fungi in plant communities, information is needed on whether the symbiosis is specific. In this chapter, I briefly review the ecological consequences of specificity versus non-specificity in the arbuscular mycorrhizal symbiosis on plant ecology. Both from a theoretical approach, and based on observations, there has been an underlying assumption that no specificity exists in the arbuscular mycorrhizal symbiosis. I consider why these assumptions have been made. Direct evidence for or against specificity in the symbiosis is scant and the reason is mainly due to the difficulty in describing AMF community structure in natural communities (see Clapp et al., Chap.8, this Vol.). Here, I take an evolutionary, as well as an ecological, approach to look at the evidence that predicts that evolution of specificity in the arbuscular mycorrhizal symbiosis could occur. I then consider alternative hypotheses and evidence that could explain why the evolution of specificity might not occur. These hypotheses are based on the growth habit, reproductive strategies and foraging behaviour of AMF and on new findings concerning ANF genetics.