993 resultados para Placer deposits
Resumo:
Chemical, x-ray and other data are given for todorokite, (Mn, Mg, Ca, Ba, Na, K)2.Mn5O12.3H2O, from Charco Redondo, Cuba, Farragudo, Portugal, and Hüttenberg, Austria. Additional localities at Romanèche, France, Saipan Island, Bahia, Brazil and Sterling Hill, New Jersey, are noted. Delatorreite of Simon and Straczek (1958) is identical with todorokite.
(Table 1, page 376), Composition of manganese deposits from the Gulf of Aden and the Carlsberg Ridge
Resumo:
Iron-manganese nodules from the ocean floor have been extensively studied. But, because of the fine grain size of the particles of the nodules, structural identification by X-ray and electron diffraction techniques is difficult and the mineralogy of the iron oxide phase has not been well characterized. The observation of the Mössbauer spectrum-in which each nucleus absorbs gamma-rays independently-is not limited by particle size in the same way as is the observation of Bragg peaks in diffraction measurements, in which radiation must be scattered coherently from a large number of atoms. The magnetic hyperfine splitting in the Mössbauer spectrum of magnetic materials is affected, however, when the particles are so small that they become superparamagnetic. We describe here an investigation using the 57Fe Mössbauer effect of two iron-manganese nodules in which the iron oxide phase could not be detected by X-ray or electron diffraction.
Resumo:
Manganese deposits are abundant in various places in the Oshima Peninsula southwest of Hokkaido. This is particular the case of Todoroki Mine situated about 25 kilometers to the south-east of the Ginzan railway station in Siribesi Province. It consists of manganese beds intermixed with a tertiary volcanic tuff complex overlaying granite.
Resumo:
Prior to arrival on this site, the only survey data available was from the Vema-20 crossing of the area. The recommended site location was over a relatively smooth valley in the bottom topography at about 4750 meters (15,580 feet) depth (uncorrected), about 10 kilometers wide E-W between peaks (or ridges) on either side. Sediment thickness was unknown. The center of the valley is near the peak of a wide (40 to 50 kilometers) positive magnetic anomaly, identified as Magnetic Anomaly 30 in the hypothesized geomagnetic time scale with an age of 72 million years.
Resumo:
The Atlantic Advisory Panel proposed that Site 9 should be drilled on the northeastern flank of the Bermuda Rise (lat. 32° 37' N., long. 59° 10' W.), which is about 100 miles west of the Sohm Abyssal Plain. The bottom of this region consists of low linear ridges that are roughly parallel and oriented in a northwest-southeasterly direction. Scattered seamounts, some of which have peaks 2000 fathoms (3660 meters) below sea level, arise from the otherwise featureless sea floor between the ridges. The primary purpose in drilling Site 9 was to examine a sedimentary column where seismic reflectors were largely absent and to determine the age of sediments overlying acoustical basement in the examination of sea floor spreading.
Resumo:
The present paper, deals with the results of the bottom sampling. Sampling devices were a gravity corer for heat flow measurement and dredges of bucket type.
Resumo:
This site was accidentally spudded on a small basement pinnacle and was abandoned when hard rock was reached within a few meters from the surface. The section penetrated consisted of coarse winnowed calcareous sand over thin chalk ooze resting on a hard crust of ferromanganese oxide presumably covering basalt.
Resumo:
The preliminary planning and approach to site 13 were taken from the JOIDES Atlantic Advisory Panel Report and from a previous detailed survey of the site by R/V Vema of the Lamont Geological Observatory. Several CSP profiles crossing the selected site in various directions show an uplifted portion of the sea floor roughly circular in shape of about 10 kilometers in diameter. In contrast to the smooth bottom of the surrounding abyssal plain, the topography of the small rise selected for the site has a small-scale roughness of amplitude of 40 to 80 meters. The work reported here is a biostratigraphic summary of available samples. Only the most important and biostratigraphically significant components of the faunas have been noted. No attempt has been made to give an exhaustive faunal analysis of the samples seen.
Resumo:
The BLM-OCS (Bureau of Land Management-Outer Continental Shelf) program was designed to establish chemical, biological, and geological baseline on the South Texas Continental Shelf. The focus for the geological program was to establish the nature and amount of the suspended sediment in the water column, of the Holocene sediments on the shelf, and to identify and locate regions of geology conditions which may be hazardous to OCS operations. To accomplish these goals three cruises were planned. The report constitutes results of the first cruise. The results of these cruises associated with the subsequent laboratory analysis, enabled to establish a detailed baseline in order to provide significant geologic and biologic data for environmental assessment. Dredges recovered are available at University of Texas (see: BLM/OCS South Texas Outer Continental Shelf (STOCS) Project Sediment Data http://www.ngdc.noaa.gov/docucomp/page?xml=NOAA/NESDIS/NGDC/MGG/Geology/iso/xml/G02888.xml&view=getDataView&header=none).
Resumo:
Electron microprobe and X-ray diffraction data for north Pacific manganese nodules reveal that the transition metal distributions are controlled by the mineralogy. Microlayers rich in 10Å-manganates generally have high Mn/Fe ratios and positive correlations between Ni, Cu and Mn, and between Co and Fe. Microlayers rich in vernadite, on the other hand, show low Mn/Fe ratios, and Co, Ni and Cu all show positive correlations with Mn. The 10Å-manganates form mainly in porewaters with high Mn/Fe ratios. The Ni2+ and Cu2+ ions are post-depositionally incorporated into the interlayers of the manganates, whereas Co3+ is substituted for Fe3+ in ferric oxyhydroxides. In seawater with a low Mn/Fe ratio, on the other hand, the adsorption of positively charged ferric oxyhydroxides on negatively charged [MnO6] octahedral layers suppresses the growth of 10Å-manganates, enhancing the formation of vernadite. Positively charged hydroxides of Co3+, Ni2+ and Cu2+ are also adsorbed on the [MnO6] layers. These mechanisms of mineral formation and metal uptake are corroborated by data for other oceanic non-hydrothermal manganese nodules and crusts.
Resumo:
During Discovery Cruise 11, April-May 1966, eleven hauls were made on the crest and on the southern facing slope of Palmer Ridge in the Peake Deep area in order to fill out the information gained last year. Limestones were collected ranging in age from lowest Eocene through to Upper Tertiary, and several hauls successfully sampled the basement beneath these, producing weathered basalts, metamorphosed basalts and dolerites. In Peake Deep on the north slope of Palmer Ridge hard Eocene sediments were core sampled near the base of the slope but no cores could be got near the top.
Resumo:
The BLM-OCS (Bureau of Land Management-Outer Continental Shelf) program was designed to establish chemical, biological, and geological baseline on the South Texas Continental Shelf. The focus for the geological program was to establish the nature and amount of the suspended sediment in the water column, of the Holocene sediments on the shelf, and to identify and locate regions of geology conditions which may be hazardous to OCS operations. To accomplish these goals three cruises were planned. The report constitutes results of the second cruise. The results of these cruises associated with the subsequent laboratory analysis, enabled to establish a detailed baseline in order to provide significant geologic and biologic data for environmental assessment. Dredges recovered are available at University of Texas (see: BLM/OCS South Texas Outer Continental Shelf (STOCS) Project Sediment Data http://www.ngdc.noaa.gov/docucomp/page?xml=NOAA/NESDIS/NGDC/MGG/Geology/iso/xml/G02888.xml&view=getDataView&header=none).