962 resultados para Philodemus, approximately 110 B.C.-approximately 40 B.C.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-temperature (LT) magnetic remanence and hysteresis measurements, in the range 300-5 K, were combined with energy dispersive spectroscopy (EDS) in order to characterize the magnetic inventory of strongly diagenetically altered sediments originating from the Niger deep-sea fan. We demonstrate the possibility of distinguishing between different compositions of members of the magnetite-ulvöspinel and ilmenite-hematite solid solution series on a set of five representative samples, two from the upper suboxic and three from the lower sulfidic anoxic zone of gravity core GeoB 4901. Highly sensitive LT magnetic measurements were performed on magnetic extracts resulting in large differences in the magnetic behavior between samples from the different layers. This emphasizes that both Fe-Ti oxide phases occur in different proportions in the two geochemical environments. Most prominent are variations in the coercivity sensitive parameter coercive field (BC). At room-temperature (RT) hysteresis loops for all extracts are narrow and yield low coercivities (6-13 mT). With decreasing temperature the loops become more pronounced and wider. At 5 K an approximately 5-fold increase in BC for the suboxic samples contrasts a 20-25-fold increase for the samples from the anoxic zone. We demonstrate that this distinct increase in BC at LT corresponds to the increasing proportion of the Ti-rich hemoilmenite phase, while Fe-rich (titano-)magnetite dominates the magnetic signal at RT. This trend is also seen in the room-temperature saturation isothermal remanent magnetization (RT-SIRM) cycles: suboxic samples show remanence curves dominated by Fe-rich mineral phases while anoxic samples display curves clearly dominated by Ti-rich particles. We show that the EDS intensity ratios of the characteristic Fe Kalpha and Ti Kalpha lines of the Fe-Ti oxides may be used to differentiate between members of the magnetite-ulvöspinel and ilmenite-hematite solid solution series. Furthermore it is possible to calculate an approximate composition for each grain if the intensity ratios of natural particles are linked to well-known standards. Thus, element spectra with high Fe/Ti intensity ratios were found to be rather typical of titanomagnetite while low Fe/Ti ratios are indicative of hemoilmenite. The EDS analyses confirm the LT magnetic results, Fe-rich magnetic phases dominate in the upper suboxic environment whereas Ti-rich magnetic phases comprise the majority of particles in the lower anoxic domain: The mineral assemblage of the upper suboxic environments is composed of magnetite (~19%), titanomagnetite (~62%), hemoilmenite (~17%) and ~2% other particles. In the lower anoxic sediments, reductive diagenetic alteration has resulted in more extensive depletion of the (titano-)magnetite phase, resulting in a relative enrichment of the hemoilmenite phase (~66%). In these strongly anoxic sediments stoichiometric magnetite is barely preserved and only ~5% titanomagnetite was detected. The remaining ~28% comprises Ti-rich particles such as pseudobrookite or rutile.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been proposed that ocean acidification (OA) will interact with other environmental factors to influence the overall impact of global change on biological systems. Accordingly we investigated the influence of nitrogen limitation and OA on the physiology of diatoms by growing the diatom Phaeodactylum tricornutum Bohlin under elevated (1000 µatm; high CO2- HC) or ambient (390 µatm; low CO2-LC) levels of CO2 with replete (110 µmol/L; high nitrate-HN) or reduced (10 ?mol/L; low nitrate-LN) levels of NO3- and subjecting the cells to solar radiation with or without UV irradiance to determine their susceptibility to UV radiation (UVR, 280-400 nm). Our results indicate that OA and UVB induced significantly higher inhibition of both the photosynthetic rate and quantum yield under LN than under HN conditions. UVA or/and UVB increased the cells' non-photochemical quenching (NPQ) regardless of the CO2 levels. Under LN and OA conditions, activity of superoxide dismutase and catalase activities were enhanced, along with the highest sensitivity to UVB and the lowest ratio of repair to damage of PSII. HC-grown cells showed a faster recovery rate of yield under HN but not under LN conditions. We conclude therefore that nutrient limitation makes cells more prone to the deleterious effects of UV radiation and that HC conditions (ocean acidification) exacerbate this effect. The finding that nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance of the diatom P. tricornutum implies that ocean primary production and the marine biological C pump will be affected by OA under multiple stressors.