981 resultados para Phi Kappa Psi.
Resumo:
Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of sym-N,N',N `'-triarylguanidines, ArN=C(NHAr)(2) (sym = symmetrical; Ar = 2-MeC6H4 (LH22-tolyl), 2-(MeO)C6H4 (LH22-anisyl), 4-MeC6H4 (LH24-tolyl), 2,5-Me2C6H3 (LH22,5-xylyl), and 2,6-Me2C6H3 (LH22,6-xylyl)) in toluene under reflux condition for 3 h afforded cis- or trans-Cl2Pt(S(O)Me-2)(ArN=C(NHAr)(2))] (Ar = 2-MeC6H4 (1), 2-(MeO)C6H4 (2), 4-MeC6H4 (3), 2,5-h Me2C6H3 (4), and 2,6-Me2C6H3 (5), respectively) in 83-96% yield. Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of LH22-tolyl and LH24-tolyl in the presence of 1 equiv of NaOAc in methanol under reflux condition for 3 h afforded acetate-substituted products, cis-(AcO)ClPt(S(O)Me-2)(ArN=C(NHAr)(2))] (Ar = 2-MeC6H4 (6) and 4-MeC6H4 (7)) in 83% and 84% yields, respectively. Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of LH22-anisyl and LH22-tolyl in the presence of 1 equiv of NaOAc in methanol under reflux condition for 3 and 12 h afforded six-membered C,N] platinacycles, Pt{kappa(2)(C,N)-C6H3R-3(NHC(NHAr)(=NAr))-2}Cl(S(O)Me-2)] (Ar = 2-RC6H4; R = OMe (8) and Me (9)), in 92% and 79% yields, respectively. The new complexes have been characterized by analytical and spectroscopic techniques, and further the molecular structures of 1, 2, 4, 5, 6, and 8 have been determined by single-crystal X-ray diffraction. The platinum atom in 1, 4, and 5 exhibited the trans configuration, while that in 2, 6, and 8 exhibited the cis configuration. Complex 6 is shown to be the precursor for 9, and the former is suggested to transform to the latter possibly via an intramolecular C-H activation followed by elimination of AcOH. The solution behavior of new complexes has been studied by multinuclear NMR (H-1, Pt-195, and C-13) spectroscopy. The new complexes exist exclusively as a single isomer (trans (1 and 5) and cis (6 and 7)), a mixture of cis and trans isomers with the former isomer being predominant in the case of 2 and the latter isomer being predominant in the case of 3. Complex 5 in the trans form revealed the presence of one isomer at 0.007 mM concentration and two isomers in about 1.00:0.12 ratio at 0.154 mM concentration as revealed by H-1 NMR spectroscopy, and this has been ascribed to the restricted Pt-S bond rotation at higher concentration. Platinacycle 8 exists as one isomer, while 9 exists as a mixture of seven isomers in solution. The influence of steric factor, pi-acceptor property of the guanidine, subtle solid-state packing forces upon the configuration of the platinum atom, and the number of isomers in solution have been outlined. Factors that accelerate or slow down the cycloplatination reaction, the role of NaOAc, and a plausible mechanism of this reaction have been discussed.
Resumo:
We report on a comprehensive analysis of the renormalization of noncommutative phi(4) scalar field theories on the Groenewold-Moyal plane. These scalar field theories are twisted Poincare invariant. Our main results are that these scalar field theories are renormalizable, free of UV/IR mixing, possess the same fixed points and beta-functions for the couplings as their commutative counterparts. We also argue that similar results hold true for any generic noncommutative field theory with polynomial interactions and involving only pure matter fields. A secondary aim of this work is to provide a comprehensive review of different approaches for the computation of the noncommutative S-matrix: noncommutative interaction picture and noncommutative Lehmann-Symanzik-Zimmermann formalism. DOI: 10.1103/PhysRevD.87.064014
Resumo:
A rigorous lower bound solution, with the usage of the finite elements limit analysis, has been obtained for finding the ultimate bearing capacity of two interfering strip footings placed on a sandy medium. Smooth as well as rough footingsoil interfaces are considered in the analysis. The failure load for an interfering footing becomes always greater than that for a single isolated footing. The effect of the interference on the failure load (i) for rough footings becomes greater than that for smooth footings, (ii) increases with an increase in phi, and (iii) becomes almost negligible beyond S/B>3. Compared with various theoretical and experimental results reported in literature, the present analysis generally provides the lowest magnitude of the collapse load. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
We present results of surface mechanical and particle tracking measurements of nanoparticles trapped at the air-water interface as a function of their areal density. We monitor both the surface pressure (II) and isothermal compression modulus (epsilon) as well as the dynamics of nanoparticle clusters, using fluorescence confocal microscopy while they are compressed to very high density near the two dimensional close packing density Phi similar to 0.82. We observe non-monotonic variation in both epsilon and the dynamic heterogeneity, characterized by the dynamical susceptibility chi(4) with Phi, in such high density monolayers. We provide insight into the underlying nature of such transitions in close packed high density nanoparticle monolayers in terms of the morphology and flexibility of these soft colloidal particles.. We discuss the significance our results in the context of related studies on two dimensional granular or colloidal systems. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
The structural and optical properties of semipolar (1 1 -2 2) GaN grown on m-plane (1 0 -1 0) sapphire substrates by molecular beam epitaxy were investigated. An in-plane orientation relationship was found to be 1 -1 0 0] GaN parallel to 1 2-1 0] sapphire and -1 -1 2 3] GaN parallel to 0 0 0 1] sapphire for semipolar GaN on m-plane sapphire substrates. The near band emission (NBE) was found at 3.432 eV, which is slightly blue shifted compared to the bulk GaN. The Raman E-2 (high) peak position observed at 569.1 cm(-1), which indicates that film is compressively strained. Schottky barrier height (phi(b)) and the ideality factor (eta) for the Au/semipolar GaN Schottky diode found to be 0.55 eV and 2.11, respectively obtained from the TE model.
Resumo:
Guanidine derived six-membered C,N] palladacycles of the types (C,N)Pd(mu-OC(O)R)](2) (1a-d), (C,N)Pd(mu-Br)](2) (2a,b), cis-(C,N)PdBr(L)] (3a-d, 4, and 5), and ring contracted guanidine derived five-membered C,N] palladacycle, (C,N)PdBr(C NXy)] (6) were prepared in high yield following the established methods with a view aimed at understanding the influence of the substituents on the aryl rings of the guanidine upon the solid state structure and solution behaviour of palladacycles. Palladacycles were characterised by microanalytical, IR, NMR and mass spectral data. The molecular structures of 1a, 1c, 2a, 2b, 3a, 3c, 3d, and 4-6 were determined by single crystal X-ray diffraction data. Palladacycles 1a and 1c were shown to exist as a dimer in transoid in-in conformation in the solid state but as a mixture of a dimer in major proportion and a monomer (kappa(2)-O,O'-OAc) in solution as deduced from H-1 NMR data. Palladacycles 2a and 2b were shown to exist as a dimer in transoid conformation in the solid state but the former was shown to exist as a mixture of a dimer and presumably a trimer in solution as revealed by a variable temperature H-1 NMR data in conjunction with ESI-MS data. The cis configuration around the palladium atom in 3a, 3c, and 3d was ascribed to steric influence of the aryl moiety of =NAr unit and that in 4-6 was ascribed to antisymbiosis. The solution behaviour of 3d was studied by a variable concentration (VC) H-1 NMR data.
Resumo:
By using the axisymmetric quasi-lower bound finite-element limit analysis, the bearing capacity factors N-c(p) and N-gamma q(p) have been computed for axially loaded piles, with the shaft embedded in a fully cohesive soil medium and the tip placed over cohesive frictional soil strata. The results were obtained for various combinations of L/D, phi(l), and c(l)/c(u); the subscripts l and u refer to lower and upper soil strata, respectively. The factors N-c(p) and N-gamma q(p) increase continuously with increases in L/D and phi(l); the rate of increase of N-c(p) and N-gamma q(p) with L/D, however, decreases with an increase in L/D. For c(l)/c(u) > 100, the factor N-c(p) hardly depends on L/D.
Resumo:
We demonstrate a rigidity percolation transition and the onset of yield stress in a dilute aqueous dispersion of graphene oxide platelets (aspect ratio similar to 5000) above a critical volume fraction of 3.75 x 10(-4) with a percolation exponent of 2.4 +/- 0.1. The viscoelastic moduli of the gel at rest measured as a function of time indicate the absence of structural evolution of the 3D percolated network of disks. However a shear-induced aging giving rise to a compact jammed state and shear rejuvenation indicating a homogenous flow is observed when a steady shear stress (sigma) is imposed in creep experiments. We construct a shear diagram (sigma vs. volume fraction phi) and the critical stress above which shear rejuvenation occurs is identified as the yield stress sigma(y) of the gel. The minimum steady state shear rate (gamma) over dot(m) obtained from creep experiments agrees well with the end of the plateau region in a controlled shear rate flow curve, indicating a shear localization below (gamma) over dot(m). A steady state shear banding in the plateau region of the flow curve observed in particle velocimetry measurements in a Couette geometry confirms that the dilute suspensions of GO platelets form a thixotropic yield stress fluid.
Resumo:
We propose power allocation algorithms for increasing the sum rate of two and three user interference channels. The channels experience fast fading and there is an average power constraint on each transmitter. Our achievable strategies for two and three user interference channels are based on the classification of the interference into very strong, strong and weak interferences. We present numerical results of the power allocation algorithm for two user Gaussian interference channel with Rician fading with mean total power gain of the fade Omega = 3 and Rician factor kappa = 0.5 and compare the sum rate with that obtained from ergodic interference alignment with water-filling. We show that our power allocation algorithm increases the sum rate with a gain of 1.66dB at average transmit SNR of 5dB. For the three user Gaussian interference channel with Rayleigh fading with distribution CN(0, 0.5), we show that our power allocation algorithm improves the sum rate with a gain of 1.5dB at average transmit SNR of 5dB.
Resumo:
In this study we determined the molecular mechanisms of how homocysteine differentially affects receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG) synthesis in the bone. The results showed that oxidative stress induced by homocysteine deranges insulin-sensitive FOXO1 and MAP kinase signaling cascades to decrease OPG and increase RANKL synthesis in osteoblast cultures. We observed that downregulation of insulin/FOXO1 and p38 MAP kinase signaling mechanisms due to phosphorylation of protein phosphatase 2 A (PP2A) was the key event that inhibited OPG synthesis in homocysteine-treated osteoblast cultures. siRNA knockdown experiments confirmed that FOXO1 is integral to OPG and p38 synthesis. Conversely homocysteine increased RANKL synthesis in osteoblasts through c-Jun/JNK MAP kinase signaling mechanisms independent of FOXO1. In the rat bone milieu, high-methionine diet-induced hyperhomocysteinemia lowered FOXO1 and OPG expression and increased synthesis of proresorptive and inflammatory cytokines such as RANKL, M-CSF, IL-1 alpha, IL-1 beta, G-CSF, GM-CSF, MIP-1 alpha, IFN-gamma, IL-17, and TNF-alpha. Such pathophysiological conditions were exacerbated by ovariectomy. Lowering the serum homocysteine level by a simultaneous supplementation with N-acetylcysteine improved OPG and FOXO1 expression and partially antagonized RANKL and proresorptive cytokine synthesis in the bone milieu. These results emphasize that hyperhomocysteinemia alters the redox regulatory mechanism in the osteoblast by activating PP2A and deranging FOXO1 and MAPK signaling cascades, eventually shifting the OPG:RANKL ratio toward increased osteoclast activity and decreased bone quality (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
The mechanical behaviour of cohesive-frictional granular materials is a combination of the strength pervading as intergranular friction (represented as an angle of internal friction - Phi), and the cohesion (C) between these particles. Most behavioral or constitutive models of this class of granular materials comprise of a cohesion and frictional component with no regard to the length scale i.e. from the micro structural models through the continuum models. An experimental study has been made on a model granular material, viz. angular sand with different weights of binding agents (varying degrees of cohesion) at multiple length scales to physically map this phenomenon. Cylindrical specimen of various diameters - 10, 20, 38, 100, 150 mm (and with an aspect ratio of 2) are reconstituted with 2, 4 and 8% by weight of a binding agent. The magnitude of this cohesion is analyzed using uniaxial compression tests and it is assumed to correspond to the peak in the normalized stress-strain plot. Increase in the cohesive strength of the material is seen with increasing size of the specimen. A possibility of ``entanglement'' occurring in larger specimens is proposed as a possible reason for deviation from a continuum framework.
Resumo:
The effects of multiwalled carbon nanotubes (MWNTs) on the concentration fluctuations, interfacial driven elasticity, phase morphology, and local segmental dynamics of chains for near-critical compositions of polystyrene/poly(vinyl to methyl ether) (PS/PVME) blends were systematically investigated using dynamic shear rheology and dielectric spectroscopy. The contribution of the correlation length (xi) of the concentration fluctuations to the evolving stresses was monitored in situ to probe the different stages of demixing in the blends. The classical upturn in the dynamic moduli was taken as the rheological demixing temperature (T-rheo), which was also observed to be in close agreement with those obtained using concentration fluctuation variance, <(delta phi)(2)>, versus temperature curves. Further, Fredrickson and Larson's approach involving the mean-field approximation and the double-reptation self-concentration (DRSC) model was employed to evaluate the spinodal decomposition temperature (T-s). Interestingly, the values of both T-rheo and T-s shifted upward in the blends in the presence of MWNTs, manifesting in molecular-level miscibility. These phenomenal changes were further observed to be a function of the concentration of MWNTs. The evolution of morphology as a function of temperature was studied using polarized optical microscopy (POM). It was observed that PVME, which evolved as an interconnected network during the early stages of demixing, coarsened into a matrix-droplet morphology in the late stages. The preferential wetting of PVME onto MWNTs as a result of physicochemical interactions retained the interconnected network of PVME for longer time scales, as supported by POM and atomic force microscopy (AFM) images. Microscopic heterogeneity in macroscopically miscible systems was studied by dielectric relaxation spectroscopy. The slowing of segmental relaxations in PVME was observed in the presence of both ``frozen'' PS and MWNTs interestingly at temperatures much below the calorimetric glass transition temperature (T-g). This phenomenon was observed to be local rather than global and was addressed by monitoring the evolution of the relaxation spectra near and above the demixing temperature.
Resumo:
In this paper, we analyze the combined effects of size quantization and device temperature variations (T = 50K to 400 K) on the intrinsic carrier concentration (n(i)), electron concentration (n) and thereby on the threshold voltage (V-th) for thin silicon film (t(si) = 1 nm to 10 nm) based fully-depleted Double-Gate Silicon-on-Insulator MOSFETs. The threshold voltage (V-th) is defined as the gate voltage (V-g) at which the potential at the center of the channel (Phi(c)) begins to saturate (Phi(c) = Phi(c(sat))). It is shown that in the strong quantum confinement regime (t(si) <= 3nm), the effects of size quantization far over-ride the effects of temperature variations on the total change in band-gap (Delta E-g(eff)), intrinsic carrier concentration (n(i)), electron concentration (n), Phi(c(sat)) and the threshold voltage (V-th). On the other hand, for t(si) >= 4 nm, it is shown that size quantization effects recede with increasing t(si), while the effects of temperature variations become increasingly significant. Through detailed analysis, a physical model for the threshold voltage is presented both for the undoped and doped cases valid over a wide-range of device temperatures, silicon film thicknesses and substrate doping densities. Both in the undoped and doped cases, it is shown that the threshold voltage strongly depends on the channel charge density and that it is independent of incomplete ionization effects, at lower device temperatures. The results are compared with the published work available in literature, and it is shown that the present approach incorporates quantization and temperature effects over the entire temperature range. We also present an analytical model for V-th as a function of device temperature (T). (C) 2013 AIP Publishing LLC.
Resumo:
We study melting of a face-centered crystalline solid consisting of polydisperse Lennard-Jones spheres with Gaussian polydispersity in size. The phase diagram reproduces the existence of a nearly temperature invariant terminal polydispersity (delta(t) similar or equal to 0.11), with no signature of reentrant melting. The absence of reentrant melting can be attributed to the influence of the attractive part of the potential upon melting. We find that at terminal polydispersity the fractional density change approaches zero, which seems to arise from vanishingly small compressibility of the disordered phase. At constant temperature and volume fraction the system undergoes a sharp transition from crystalline solid to the disordered amorphous or fluid state with increasing polydispersity. This has been quantified by second- and third-order rotational invariant bond orientational order, as well as by the average inherent structure energy. The translational order parameter also indicates a similar sharp structural change at delta similar or equal to 0.09 in case of T* = 1.0, phi = 0.58. The free energy calculation further supports the sharp nature of the transition. The third-order rotationally invariant bond order shows that with increasing polydispersity, the local cluster favors a more icosahedral arrangement and the system loses its local crystalline symmetry. Interestingly, the value of structure factor S(k) of the amorphous phase at delta similar or equal to 0.10 (just beyond the solid-liquid transition density at T* = 1) becomes 2.75, which is below the value of 2.85 required for freezing given by the empirical Hansen-Verlet rule of crystallization, well known in the theory of freezing.