963 resultados para Petroleum shipping terminals.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, curcumin from Chinese herbal medicine turmeric was determined by capillary electrophoresis with amperometric detection (CE-AD) pretreated by a self-designed, simple, inexpensive solid-phase extraction (SPE) cartridge based on the material of tributyl phosphate resin. An average concentration factor of 9 with the recovery of >80% was achieved when applied to the analysis of curcumin in extracts of turmeric. Under the optimized CE-AD conditions: a running buffer composed of 15 mM phosphate buffer at a pH 9.7, separation voltage at 16 W, injection for 6 s at 9 W and detection at 1.20 V, CE-AD with SPE exhibited low detection limit as 3 - 10(-8) mol/l (SIN = 3), high efficiency of 1.0(.)10(5) N, linear range of 7(.)10(-4) -3(.)10(-6) mol/l (r = 0.9986) for curcumin extracted from light petroleum. The method developed resulted in enhancement of the detection sensitivity and reduction of interference from sample matrix in complicated samples and exhibited the potential application for routine analysis, especially in food, because a relatively complete process of sample treatment and analysis was described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of cokes pretreated at different temperatures are used as anodic materials and their electrochemical characteristics are examined by cyclic voltammetry. It is found that for some cokes such as petroleum coke (preheated at 1300 degrees C), pitch coke (1300 degrees C), needle coke (1900 degrees C), metallurgical coke (1900 degrees C), high capacity and cyclic efficiency are achieved. Needle coke (1900 degrees C) and metallurgical coke (1900 degrees C) in particular give a capacity of over 200 mAh/g and a cyclic efficiency of nearly 100%, whereas poor performance is exhibited by those pretreated at higher or lower temperatures, e.g., petroleum cokes (500 degrees C, 2800 degrees C), pitch coke (500 degrees C) and needle coke (2800 degrees C). The cyclic voltammograms show two electrochemical processes, one at about 0.1 V vs. Li+/Li which is electrochemically reversible, and may be attributed to the intercalation/deintercalation of lithium ions while the other, at about 0.6 V vs. Li+/Li, is electrochemically irreversible and may be assigned to the decomposition of the electrolyte solvent, which leads to formation of the passive film on the anode surface. The experimental results strongly suggest that the pretreatment temperature of cokes and of the solvent are determining factors for the growth, structure and properties of the passive film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of 1,3-cyclohexadiene(tricarbonyl)iron (1) with ortho-substituted aryllithium reagents ArLi (Ar=o-CH3C6H4, o-CH3OC6H4, o-CF3C6H4) in ether at low temperature, and subsequent alkylation of the acylmetalates formed with Et3OBF4 in aqueous solution at 0-degrees-C or in CH2Cl2 at -60-degrees-C gave the 1,3-cyclohexadiene(dicarbonyl)[ethoxy(aryl)carbene]iron complexes (eta4-C6H8)(CO)2FeC(OC2H5)Ar (3, Ar = o-CH3C6H4; 4, Ar = o-CH3OC6H4), and the isomerized product (eta3-C6H8)(CO)2FeC(OC2H5)C6H4CF3-o (5), respectively, among which the structure of 3 has been established by an X-ray diffraction study. Complex 3 is monoclinic, space group P2(1) with a = 8.118(4), b = 7.367(4), c = 14.002(6) angstrom, beta = 104.09(3)-degrees, V = 812.2(6) angstrom3, Z = 2, D(c) = 1.39 g cm-3, R = 0.056, and R(w) = 0.062 for 976 observed reflections. Complexes 3 and 5 were converted into the chelated allyliron phosphine adducts(eta3-C6H8)(CO)2(PR31)FeC(OC2H5)Ar (6, Ar = o-CH3C6H4, R1 = Ph; 7, Ar = o-CH3C6H4, R1 = OPh; 9, Ar = o-CF3C6H4, R1 = Ph), by reaction with phosphines in petroleum ether at low temperatures.