992 resultados para Pesticide application
Resumo:
Accurately characterizing the time-varying interference caused to the primary users is essential in ensuring a successful deployment of cognitive radios (CR). We show that the aggregate interference at the primary receiver (PU-Rx) from multiple, randomly located cognitive users (CUs) is well modeled as a shifted lognormal random process, which is more accurate than the lognormal and the Gaussian process models considered in the literature, even for a relatively dense deployment of CUs. It also compares favorably with the asymptotically exact stable and symmetric truncated stable distribution models, except at high CU densities. Our model accounts for the effect of imperfect spectrum sensing, which depends on path-loss, shadowing, and small-scale fading of the link from the primary transmitter to the CU; the interweave and underlay modes or CR operation, which determine the transmit powers of the CUs; and time-correlated shadowing and fading of the links from the CUs to the PU-Rx. It leads to expressions for the probability distribution function, level crossing rate, and average exceedance duration. The impact of cooperative spectrum sensing is also characterized. We validate the model by applying it to redesign the primary exclusive zone to account for the time-varying nature of interference.
Resumo:
We present a new method for rapid NMR data acquisition and assignments applicable to unlabeled (C-12) or C-13-labeled biomolecules/organic molecules in general and metabolomics in particular. The method involves the acquisition of three two dimensional (2D) NMR spectra simultaneously using a dual receiver system. The three spectra, namely: (1) G-matrix Fourier transform (GFT) (3,2)D C-13, H-1] HSQC-TOCSY, (2) 2D H-1-H-1 TOCSY and (3) 2D C-13-H-1 HETCOR are acquired in a single experiment and provide mutually complementary information to completely assign individual metabolites in a mixture. The GFT (3,2)D C-13, H-1] HSQC-TOCSY provides 3D correlations in a reduced dimensionality manner facilitating high resolution and unambiguous assignments. The experiments were applied for complete H-1 and C-13 assignments of a mixture of 21 unlabeled metabolites corresponding to a medium used in assisted reproductive technology. Taken together, the experiments provide time gain of order of magnitudes compared to the conventional data acquisition methods and can be combined with other fast NMR techniques such as non-uniform sampling and covariance spectroscopy. This provides new avenues for using multiple receivers and projection NMR techniques for high-throughput approaches in metabolomics.
Resumo:
We report a simple hydrothermal synthesis of highly reproducible carbon nanoparticles in a size range between 2 and 7 nmfroma single precursor sucrose without either surface passivating agents or acids and bases. The carbon nanoparticles can be used as white light phosphors, especially for ultraviolet light emitting diodes and metal-free catalyst for the reduction of nitrophenol.
Resumo:
CaTiO3:Sm3+ (1-11 mol%) nanophosphors were successfully synthesized by a low temperature solution combustion method LCS]. The structural and morphological properties of the phosphors were studied by using Powder X-ray diffractometer (PXRD), Fourier transform infrared (FTIR), X-ray photo electron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscopy (TEM). TEM studies indicate that the size of the phosphor is similar to 20-35 nm. Photoluminescence (PL) properties of Sm3+ (1-11 mol%) doped CaTiO3 for NUV excitation (407 nm) was studied in order to investigate the possibility of its use in White light emitting diode (WLED) applications. The emission spectra consists of intra 4f transitions of Sm3+, such as (4)G(5/2) -> H-6(5/2) (561 nm), (4)G(5/2) -> H-6(7/2) (601-611 nm), (4)G(5/2) -> H-6(9/2) (648 nm) and (4)G(5/2) -> H-6(11/2) (703 nm) respectively. Further, the emission at 601-611 nm show strong orange-red emission and can be applied to the orange-red emission of phosphor for the application for near ultra violet (NUV) excitation. Thermoluminescence (TL) of the samples irradiated with gamma source in the dose range 100-500 Gy was recorded at a heating rate of 5 degrees C s(-1). Two well resolved glow peaks at 164 degrees C and 214 degrees C along with shouldered peak at 186 degrees C were recorded. TL intensity increases up to 300 Gy and thereafter, it decreases with further increase of dose. The kinetic parameters namely activation energy (E), frequency factor (s) and order of kinetics were estimated and results were discussed in detail. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
It is essential to accurately estimate the working set size (WSS) of an application for various optimizations such as to partition cache among virtual machines or reduce leakage power dissipated in an over-allocated cache by switching it OFF. However, the state-of-the-art heuristics such as average memory access latency (AMAL) or cache miss ratio (CMR) are poorly correlated to the WSS of an application due to 1) over-sized caches and 2) their dispersed nature. Past studies focus on estimating WSS of an application executing on a uniprocessor platform. Estimating the same for a chip multiprocessor (CMP) with a large dispersed cache is challenging due to the presence of concurrently executing threads/processes. Hence, we propose a scalable, highly accurate method to estimate WSS of an application. We call this method ``tagged WSS (TWSS)'' estimation method. We demonstrate the use of TWSS to switch-OFF the over-allocated cache ways in Static and Dynamic NonUniform Cache Architectures (SNUCA, DNUCA) on a tiled CMP. In our implementation of adaptable way SNUCA and DNUCA caches, decision of altering associativity is taken by each L2 controller. Hence, this approach scales better with the number of cores present on a CMP. It gives overall (geometric mean) 26% and 19% higher energy-delay product savings compared to AMAL and CMR heuristics on SNUCA, respectively.
Resumo:
The ever-increasing number of diseases worldwide requires comprehensive, efficient, and cost-effective modes of treatments. Among various strategies, nanomaterials fulfill most of these criteria. The unique physicochemical properties of nanoparticles have made them a premier choice as a drug or a drug delivery system for the purpose of treatment, and as bio-detectors for disease prognosis. However, the main challenge is the proper consideration of the physical properties of these nanomaterials, while developing them as potential tools for therapeutics and/or diagnostics. In this review, we focus mainly on the characteristics of nanoparticles to develop an effective and sensitive system for clinical purposes. This review will present an overview of the important properties of nanoparticles, through their journey from its route of administration until disposal from the human body after accomplishing targeted functionality. We have chosen cancer as our model disease to explain the potentiality of nano-systems for therapeutics and diagnostics in relation to several organs (intestine, lung, brain, etc.). Furthermore, we have discussed their biodegradability and accumulation probability which can cause unfavorable side effects in healthy human subjects.
Resumo:
Photocatalytic disassembly of tertiary amine-based poly(propyl ether imine) dendrimers, in the presence of either 9,10-anthraquinone or riboflavin tetraacetate and O-2(g), leads to di- and tripropanolamine monomers. An application is shown by solubilisation of a water-insoluble dye, Sudan I, in aq. dendrimer solution ('catch'), followed by its `release' upon disassembly of the dendrimer.
Resumo:
We are reporting the fabrication, characterizations and supercapacitance performance of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes (BI-GO/MWCNTs) composite. The synthesis of BI-GO materials involves cyclization reaction of carboxylic groups on GO among the hydroxyl and amino groups on o-phenylenediamine. The BI-GO/MWCNTs composite has been fabricated via in situ reduction of BI-GO using hydrazine in presence of MWCNTs. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize its surface and elemental composition. The uniform dispersion of MWCNTs with BI-GO helps to improve the charge transfer reaction during electrochemical process. The specific capacitance of BI-GO/MWCNTs composite is 275 and 460 F/g at 200 and 5 mV/s scan rate in 1 mol/L aqueous solution of H2SO4. This BI-GO/MWCNTs composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate, which represents its good electrochemical stability. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We address the problem of reconstructing a sparse signal from its DFT magnitude. We refer to this problem as the sparse phase retrieval (SPR) problem, which finds applications in tomography, digital holography, electron microscopy, etc. We develop a Fienup-type iterative algorithm, referred to as the Max-K algorithm, to enforce sparsity and successively refine the estimate of phase. We show that the Max-K algorithm possesses Cauchy convergence properties under certain conditions, that is, the MSE of reconstruction does not increase with iterations. We also formulate the problem of SPR as a feasibility problem, where the goal is to find a signal that is sparse in a known basis and whose Fourier transform magnitude is consistent with the measurement. Subsequently, we interpret the Max-K algorithm as alternating projections onto the object-domain and measurement-domain constraint sets and generalize it to a parameterized relaxation, known as the relaxed averaged alternating reflections (RAAR) algorithm. On the application front, we work with measurements acquired using a frequency-domain optical-coherence tomography (FDOCT) experimental setup. Experimental results on measured data show that the proposed algorithms exhibit good reconstruction performance compared with the direct inversion technique, homomorphic technique, and the classical Fienup algorithm without sparsity constraint; specifically, the autocorrelation artifacts and background noise are suppressed to a significant extent. We also demonstrate that the RAAR algorithm offers a broader framework for FDOCT reconstruction, of which the direct inversion technique and the proposed Max-K algorithm become special instances corresponding to specific values of the relaxation parameter.
Resumo:
The nature of the signal due to light beam induced current (LBIC) at the remote contacts is verified as a lateral photovoltage for non-uniformly illuminated planar p-n junction devices; simulation and experimental results are presented. The limitations imposed by the ohmic contacts are successfully overcome by the introduction of capacitively coupled remote contacts, which yield similar results without any significant loss in the estimated material and device parameters. It is observed that the LBIC measurements introduce artefacts such as shift in peak position with increasing laser power. Simulation of LBIC signal as a function of characteristic length L-c of photo-generated carriers and for different beam diameters has resulted in the observed peak shifts, thus attributed to the finite size of the beam. Further, the idea of capacitively coupled contacts has been extended to contactless measurements using pressure contacts with an oxidized aluminium electrodes. This technique avoids the contagious sample processing steps, which may introduce unintentional defects and contaminants into the material and devices under observation. Thus, we present here, the remote contact LBIC as a practically non-destructive tool in the evaluation of device parameters and welcome its use during fabrication steps. (C) 2014 AIP Publishing LLC.
Resumo:
Polypharmacology is beginning to emerge as an important concept in the field of drug discovery. However, there are no established approaches to either select appropriate target sets or design polypharmacological drugs. Here, we propose a structural-proteomics approach that utilizes the structural information of the binding sites at a genome-scale obtained through in-house algorithms to characterize the pocketome, yielding a list of ligands that can participate in various biochemical events in the mycobacterial cell. The pocket-type space is seen to be much larger than the sequence or fold-space, suggesting that variations at the site-level contribute significantly to functional repertoire of the organism. All-pair comparisons of binding sites within Mycobacterium tuberculosis (Mtb), pocket-similarity network construction and clustering result in identification of binding-site sets, each containing a group of similar binding sites, theoretically having a potential to interact with a common set of compounds. A polypharmacology index is formulated to rank targets by incorporating a measure of druggability and similarity to other pockets within the proteome. This study presents a rational approach to identify targets with polypharmacological potential along with possible drugs for repurposing, while simultaneously, obtaining clues on lead compounds for use in new drug-discovery pipelines.
Resumo:
We address the problem of designing an optimal pointwise shrinkage estimator in the transform domain, based on the minimum probability of error (MPE) criterion. We assume an additive model for the noise corrupting the clean signal. The proposed formulation is general in the sense that it can handle various noise distributions. We consider various noise distributions (Gaussian, Student's-t, and Laplacian) and compare the denoising performance of the estimator obtained with the mean-squared error (MSE)-based estimators. The MSE optimization is carried out using an unbiased estimator of the MSE, namely Stein's Unbiased Risk Estimate (SURE). Experimental results show that the MPE estimator outperforms the SURE estimator in terms of SNR of the denoised output, for low (0 -10 dB) and medium values (10 - 20 dB) of the input SNR.
Resumo:
Package-board co-design plays a crucial role in determining the performance of high-speed systems. Although there exist several commercial solutions for electromagnetic analysis and verification, lack of Computer Aided Design (CAD) tools for SI aware design and synthesis lead to longer design cycles and non-optimal package-board interconnect geometries. In this work, the functional similarities between package-board design and radio-frequency (RF) imaging are explored. Consequently, qualitative methods common to the imaging community, like Tikhonov Regularization (TR) and Landweber method are applied to solve multi-objective, multi-variable package design problems. In addition, a new hierarchical iterative piecewise linear algorithm is developed as a wrapper over LBP for an efficient solution in the design space.
Resumo:
Plasma enhanced chemical vapour deposition (PECVD) of thick germanium (Ge) films (similar to 1 mu m) on silicon dioxide (SiO2) at low temperatures is described. A diborane pretreatment on SiO2 films is done to seed the Ge growth, followed by the deposition of thick Ge films using germane (GeH4) and argon (Ar). Further, the effect of hydrogen (H-2) dilution on the deposition rate is also investigated. The film thickness and morphology is characterized using SEM. Use of high RF power and substrate temperature show increased deposition rate. EDS analysis indicates that these films contain 97-98 atomic percentage of Ge. A recipe for anisotropic dry etching of the deposited Ge films with 10nm/ min etch rate is also suggested.
Resumo:
A simple methodology has been developed for the synthesis of functional nanoporous carbon (NPC) materials using a metal-organic framework (IRMOF-3) that can act as a template for external carbon precursor (viz, sucrose) and also a self-sacrificing carbon source. The resultant graphitic NPC samples (abbreviated as NPC-0, NPC-150, NPC-300, NPC-500 and NPC-1000 based on sucrose loading) obtained through loading different amounts of sucrose exhibit tunable textural parameters. Among these, NPC-300 shows very high surface area (BET approximate to 3119 m(2)/g, Langmuir approximate to 4031 m(2)/g) with a large pore volume of 1.93 cm(3)/g. High degree of porosity coupled with polar surface functional groups, make NPC-300 remarkable candidate for the uptake of H-2 (2.54 wt% at 1 bar, and 5.1 wt% at 50 bar, 77 K) and CO2 (64 wt% at 1 bar, 195 K and 16.9 wt% at 30 bar, 298 K). As a working electrode in a supercapacitor cell, NPC-300 shows excellent reversible charge storage thus, demonstrating multifunctional usage of the carbon materials. (C) 2015 Elsevier Inc. All rights reserved.