973 resultados para Persona Natural -- Matrícula
Resumo:
p.221-228
Resumo:
p.83-89
Resumo:
p.49-60
Resumo:
p.85-89
Resumo:
En este trabajo se estudia la influencia y el papel de un aspecto del contexto exterior producido por elecciones de tipo lingüístico. Cuando el lenguaje escogido es de tipo coloquial, las primeras preguntas son informales, sobre aspectos extraescolares, y la discusión numérica atañe a N, hablamos de contexto natural. Este contexto parece inducir, en el sujeto sometido a la prueba, la convicción implícita de que debería contestar según modelos intuitivos, que dependen de la competencia que adquirió en los primeros niveles de escolarización o de modelos ingenuos. También examinamos el problema de la conciencia de los alumnos en situaciones de dificultad.
Resumo:
En esta comunicación presentamos parte de los resultados obtenidos en las investigaciones realizadas dentro de Planes Nacionales de Investigación Educativa del C.I.D.E. durante los cursos 1987-88 y 1988-89, que trataban de averiguar las dificultades del aprendizaje del álgebra en secundaria. El objetivo inicial de este trabajo era estudiar las dificultades planteadas en la resolución de problemas de enunciado verbal en los que se utiliza una ecuación de primer grado o un sistema lineal de dos ecuaciones con dos incógnitas, ya que considerabamos, como la mayoría de los profesores lo hace, que la mayor dificultad presentada en álgebra estaba en la resolución de estos problemas.
Resumo:
A new general cell-centered solution procedure based upon the conventional control or finite volume (CV or FV) approach has been developed for numerical heat transfer and fluid flow which encompasses both structured and unstructured meshes for any kind of mixed polygon cell. Unlike conventional FV methods for structured and block structured meshes and both FV and FE methods for unstructured meshes, the irregular control volume (ICV) method does not require the shape of the element or cell to be predefined because it simply exploits the concept of fluxes across cell faces. That is, the ICV method enables meshes employing mixtures of triangular, quadrilateral, and any other higher order polygonal cells to be exploited using a single solution procedure. The ICV approach otherwise preserves all the desirable features of conventional FV procedures for a structured mesh; in the current implementation, collocation of variables at cell centers is used with a Rhie and Chow interpolation (to suppress pressure oscillation in the flow field) in the context of the SIMPLE pressure correction solution procedure. In fact all other FV structured mesh-based methods may be perceived as a subset of the ICV formulation. The new ICV formulation is benchmarked using two standard computational fluid dynamics (CFD) problems i.e., the moving lid cavity and the natural convection driven cavity. Both cases were solved with a variety of structured and unstructured meshes, the latter exploiting mixed polygonal cell meshes. The polygonal mesh experiments show a higher degree of accuracy for equivalent meshes (in nodal density terms) using triangular or quadrilateral cells; these results may be interpreted in a manner similar to the CUPID scheme used in structured meshes for reducing numerical diffusion for flows with changing direction.
Resumo:
Review of: Noel Starkey (ed), Connectionist Natural Language Processing: Readings from 'Connection Science'
Resumo:
The emergent behaviour of autonomic systems, together with the scale of their deployment, impedes prediction of the full range of configuration and failure scenarios; thus it is not possible to devise management and recovery strategies to cover all possible outcomes. One solution to this problem is to embed self-managing and self-healing abilities into such applications. Traditional design approaches favour determinism, even when unnecessary. This can lead to conflicts between the non-functional requirements. Natural systems such as ant colonies have evolved cooperative, finely tuned emergent behaviours which allow the colonies to function at very large scale and to be very robust, although non-deterministic. Simple pheromone-exchange communication systems are highly efficient and are a major contribution to their success. This paper proposes that we look to natural systems for inspiration when designing architecture and communications strategies, and presents an election algorithm which encapsulates non-deterministic behaviour to achieve high scalability, robustness and stability.
Resumo:
Delivering lectures to large groups of students can provoke high levels of anxiety, particularly for new lecturers (Exley and Dennick, 2009). Further, to provide an informative and engaging lecture requires a teacher who is confident, has a sound knowledge and well developed teaching skills (Bentley-Davies, 2010). Thus, new lecturers often need experience and supervision to develop the tacit knowledge and insight into their own style and persona when teaching in order to feel confident when delivering a lecture (Quinn and Hughes, 2007). Considering this model, therefore, may potentially contribute to a lecturers’ development and performance in the classroom. This paper will present the results of the second phase of a two-stage mixed method study that investigated the similarities between lecturing and acting. Twelve in-depth interviews where undertaken with lecturers within one School of Nursing in The United Kingdom. Findings, established a model of ‘persona adoption’ that represents a series of stages that lecturers may go through to both develop and take on a persona when lecturing. This persona is often different from the way they lecturers present themselves in other parts of their working life. The first stage of this model of persona adoption is when the lecturer is subjected to a range of ‘influencing factors’ that provide not only the basic information about a lecture, but also the perceptual stimuli about giving a lecture on a specific subject, to a particular number of students, at a certain academic level. These influencing factors then inter-play with the ‘facets of the individual’, which represent the lecturer’s self-concept, subject knowledge base and philosophy of teaching. This may result in a cognitive dissonance between these ‘facets’ and the ‘influencing factors’, so affecting the lecturers’ perceptions, thoughts and feelings about having to give that particular lecture. This results in the lecturer undertaking specific ‘back stage preparation’ during which they decide on the content and modes of delivery to prepare in light of that discourse. It may result in delivering the information via single or multiple methods, which during the lecture will require various levels of interaction and participation from the students. Just prior to the lecture, the lecturer builds or ‘puts on their persona’ and gets into role, making their initial impact with the group. They use the ‘elements of acting’ as proposed by Tauber and Mester’s (1994) e.g. animated voice and body, space, props humour and suspense and surprise to portray and maintain their persona. This leads the to lecturer demonstrating either positive or negative ‘persona characteristics’ in terms of appearing confident, knowledgeable, fluent in the technical skills of delivering the lecture, being interesting and engendering interaction with the students, or not. These characteristics, may or may not, potentially heighten student interest, attention and attitudes to learning as suggested by Tauber and Mester (1994). This depends on whether the lecturer has successfully used the persona and if the lecturer has been able to engage students in the lecture, in competition with other factors that may be taking the students’ attention. Although the model suggests a linear process, to a great extent, the elements might be more interdependent and interrelated. This might suggest that depending on the lecturer’s perception of their effectiveness during the lecture, that they may decide to continue or adapt their persona and methods to appear more confident. Furthermore, depending on how successful the lecturer perceived the session to be, both their reflections ‘in’ and ‘on’ practice could influence how they teach in the future (Zwozdiak, 2011). Therefore, these reflections become part of the facets of the individual, via the ‘reflective feedback loop’, in the model, which then in turn influences progression through the model in subsequent lectures. This study concluded that these lecturers went through a process whereby they compare the demands of the lecture with their own knowledge base and skill, this resulted in them undertaking specific preparation in terms of content and delivery style, then they adopted their persona immediately prior to entering the lecture, maintain it throughout the lecture via the use of the elements of acting to achieve an informative interactive lecture. The results of which then feedback into their self-concept as a lecturer and consequently may affect the persona they project in future lectures. If lecturers, therefore, can take a step back to consider how they deliver lectures and the way they can deliberately, yet apparently naturally, use their voices, bodies, space and humour in meaningfully, they engage their students in lecture, it will not just result in them being perceived as a good lecturer, but also be a genuine act of education.
Resumo:
Article is available at: http://www.tandfonline.com/doi/full/10.1080/17439884.2015.1064953.
Resumo:
Paper presented at the Cloud Forward Conference 2015, October 6th-8th, Pisa