970 resultados para Patient Care--history--North America
Resultados tratamiento de las fracturas intertrocantéricas en el Hospital Universitario Mayor MEREDÍ
Resumo:
Las fracturas intertrocantericas son una importante causa de la morbimortalidad en los adultos mayores. Requieren la mayoria manejo quirurgico. No se ha logrado definir si es mejor el tratamiento con osteosintesis o artoplastia de cadera. Por esta razon decidimos realizar un estudio identificando los resultados en cada uno de los tratamientos con poblacion colombiana en el Hospital Universitario Mayor Mederi. Metodos: Estudio de serie de casos. Se analizó una cohorte retrospectiva de pacientes mayores de 59 años con fractura intertrocantérica en el Hospital Universitario Mayor Méderi. Resultados: Se reportaron un total de 179 pacientes con diagnóstico de fractura intertrocantérica. De los cuales se realizaron 100 osteosíntesis , 20 reemplazos totales de cadera y 59 hemiartroplastias. La mortalidad fueron 11 pacientes que corresponde al 6.1%, 3 fueron hombres y 8 mujeres, en cuanto al procedimiento realizado a 7 pacientes se les realizo osteosíntesis y a los 4 restantes se les realizo hemiartroplastia. En total 7 infecciones las cuales se presentaron respectivamente en 6 osteosíntesis y 1 hemiartroplastia. Discusión: La mortalidad fue mayor en la osteosíntesis con 7 pacientes que equivale al 63,6 % de la mortalidad total del estudio. Los porcentajes de infección postoperatoria fueron mayores en la osteosíntesis , encontrándose que del total de pacientes intervenidos 3,9% se infectaron y de estos el 85,7 % corresponden a osteosíntesis versus 14,3% de hemiartroplastia. El sangrado postoperatorio fue mayor a 500 cc en un 39% de las osteosíntesis y en un 44% en las hemiartroplastias. Conclusión: el tratamiento de las fracturas intertrocantéricas tuvo menor mortalidad y menor porcentaje de infección cuando los pacientes fueron tratados con hemiartroplastia y reemplazo total de cadera.
Resumo:
La década de 1950 fue determinante en el establecimiento y póstumo desarrollo del sistema de política exterior de la República Popular China. Al respecto, es de vital importancia realizar un análisis exhaustivo sobre esta primera etapa en donde actores externos a la nación tuvieron un papel determinante. Se busca, entonces, analizar la incidencia que tuvo el discurso de Estados Unidos en la política exterior China a través de un profundo análisis cualitativo que tendrá como base elementos propios de la historiografía. Mediante aproximaciones constructivistas, se pretende demostrar que las creencias pre-existentes de ambos actores (así como la intersubjetividad entre los mismos), determinó la identidad construida a través de la percepción mutua. Lo anterior, impulsó las relaciones predominantemente agresivas entre Estados Unidos y la China Maoísta de principios de la Guerra Fría.
Resumo:
Populations of Lesser Scaup (Aythya affinis) have declined markedly in North America since the early 1980s. When considering alternatives for achieving population recovery, it would be useful to understand how the rate of population growth is functionally related to the underlying vital rates and which vital rates affect population growth rate the most if changed (which need not be those that influenced historical population declines). To establish a more quantitative basis for learning about life history and population dynamics of Lesser Scaup, we summarized published and unpublished estimates of vital rates recorded between 1934 and 2005, and developed matrix life-cycle models with these data for females breeding in the boreal forest, prairie-parklands, and both regions combined. We then used perturbation analysis to evaluate the effect of changes in a variety of vital-rate statistics on finite population growth rate and abundance. Similar to Greater Scaup (Aythya marila), our modeled population growth rate for Lesser Scaup was most sensitive to unit and proportional change in adult female survival during the breeding and non-breeding seasons, but much less so to changes in fecundity parameters. Interestingly, population growth rate was also highly sensitive to unit and proportional changes in the mean of nesting success, duckling survival, and juvenile survival. Given the small samples of data for key aspects of the Lesser Scaup life cycle, we recommend additional research on vital rates that demonstrate a strong effect on population growth and size (e.g., adult survival probabilities). Our life-cycle models should be tested and regularly updated in the future to simultaneously guide science and management of Lesser Scaup populations in an adaptive context.
Resumo:
A case of long-range transport of a biomass burning plume from Alaska to Europe is analyzed using a Lagrangian approach. This plume was sampled several times in the free troposphere over North America, the North Atlantic and Europe by three different aircraft during the IGAC Lagrangian 2K4 experiment which was part of the ICARTT/ITOP measurement intensive in summer 2004. Measurements in the plume showed enhanced values of CO, VOCs and NOy, mainly in form of PAN. Observed O3 levels increased by 17 ppbv over 5 days. A photochemical trajectory model, CiTTyCAT, was used to examine processes responsible for the chemical evolution of the plume. The model was initialized with upwind data and compared with downwind measurements. The influence of high aerosol loading on photolysis rates in the plume was investigated using in situ aerosol measurements in the plume and lidar retrievals of optical depth as input into a photolysis code (Fast-J), run in the model. Significant impacts on photochemistry are found with a decrease of 18% in O3 production and 24% in O3 destruction over 5 days when including aerosols. The plume is found to be chemically active with large O3 increases attributed primarily to PAN decomposition during descent of the plume toward Europe. The predicted O3 changes are very dependent on temperature changes during transport and also on water vapor levels in the lower troposphere which can lead to O3 destruction. Simulation of mixing/dilution was necessary to reproduce observed pollutant levels in the plume. Mixing was simulated using background concentrations from measurements in air masses in close proximity to the plume, and mixing timescales (averaging 6.25 days) were derived from CO changes. Observed and simulated O3/CO correlations in the plume were also compared in order to evaluate the photochemistry in the model. Observed slopes change from negative to positive over 5 days. This change, which can be attributed largely to photochemistry, is well reproduced by multiple model runs even if slope values are slightly underestimated suggesting a small underestimation in modeled photochemical O3 production. The possible impact of this biomass burning plume on O3 levels in the European boundary layer was also examined by running the model for a further 5 days and comparing with data collected at surface sites, such as Jungfraujoch, which showed small O3 increases and elevated CO levels. The model predicts significant changes in O3 over the entire 10 day period due to photochemistry but the signal is largely lost because of the effects of dilution. However, measurements in several other BB plumes over Europe show that O3 impact of Alaskan fires can be potentially significant over Europe.
Resumo:
Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis.
Resumo:
The North Pacific and Bering Sea regions represent loci of cyclogenesis and storm track activity. In this paper climatological properties of extratropical storms in the North Pacific/Bering Sea are presented based upon aggregate statistics of individual storm tracks calculated by means of a feature-tracking algorithm run using NCEP–NCAR reanalysis data from 1948/49 to 2008, provided by the NOAA/Earth System Research Laboratory and the Cooperative Institute for Research in Environmental Sciences, Climate Diagnostics Center. Storm identification is based on the 850-hPa relative vorticity field (ζ) instead of the often-used mean sea level pressure; ζ is a prognostic field, a good indicator of synoptic-scale dynamics, and is directly related to the wind speed. Emphasis extends beyond winter to provide detailed consideration of all seasons. Results show that the interseasonal variability is not as large during the spring and autumn seasons. Most of the storm variables—genesis, intensity, track density—exhibited a maxima pattern that was oriented along a zonal axis. From season to season this axis underwent a north–south shift and, in some cases, a rotation to the northeast. This was determined to be a result of zonal heating variations and midtropospheric moisture patterns. Barotropic processes have an influence in shaping the downstream end of storm tracks and, together with the blocking influence of the coastal orography of northwest North America, result in high lysis concentrations, effectively making the Gulf of Alaska the “graveyard” of Pacific storms. Summer storms tended to be longest in duration. Temporal trends tended to be weak over the study area. SST did not emerge as a major cyclogenesis control in the Gulf of Alaska.
Resumo:
Intercontinental Transport of Ozone and Precursors (ITOP) (part of International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)) was an intense research effort to measure long-range transport of pollution across the North Atlantic and its impact on O3 production. During the aircraft campaign plumes were encountered containing large concentrations of CO plus other tracers and aerosols from forest fires in Alaska and Canada. A chemical transport model, p-TOMCAT, and new biomass burning emissions inventories are used to study the emissions long-range transport and their impact on the troposphere O3 budget. The fire plume structure is modeled well over long distances until it encounters convection over Europe. The CO values within the simulated plumes closely match aircraft measurements near North America and over the Atlantic and have good agreement with MOPITT CO data. O3 and NOx values were initially too great in the model plumes. However, by including additional vertical mixing of O3 above the fires, and using a lower NO2/CO emission ratio (0.008) for boreal fires, O3 concentrations are reduced closer to aircraft measurements, with NO2 closer to SCIAMACHY data. Too little PAN is produced within the simulated plumes, and our VOC scheme's simplicity may be another reason for O3 and NOx model-data discrepancies. In the p-TOMCAT simulations the fire emissions lead to increased tropospheric O3 over North America, the north Atlantic and western Europe from photochemical production and transport. The increased O3 over the Northern Hemisphere in the simulations reaches a peak in July 2004 in the range 2.0 to 6.2 Tg over a baseline of about 150 Tg.
Resumo:
In this study the relationship between the North American monsoon, the Californian sea surface temperature (SST) cold pool, the Rocky Mountains and the North Pacific subtropical anticyclone is investigated using the Hadley Centre's atmospheric climate model, HadAM3. In 1996 Hoskins hypothesized that heating in the North American monsoon might be important for the maintenance of the summertime North Pacific subtropical anticyclone, since the monsoon heating may induce descent to the north-west of the monsoon in the descending eastern flank of the subtropical anticyclone. This descent is further enhanced by radiative cooling and is associated with equatorward surface winds parallel to the western coast of North America. These equatorward winds induce oceanic upwelling of cold water and contribute to the formation of the Californian SST cold pool, which may feed back on the anticyclone by further suppressing convection and inducing descent. More recently, Rodwell and Hoskins also investigated the global summer monsoon–subtropical anticyclone relationship. They examined the role that mountains play in impeding the progress of the low-level mid-latitude westerlies, either deflecting the westerlies northwards where they ascend along the sloping mid-latitude isentropes or deflecting them southwards forcing them to descend along the isentropes. In particular, the introduction of the Rockies into a primitive-equation model adiabatically induces descent in the eastern descending flank of the North Pacific subtropical anticyclone. These hypothesized mechanisms have been investigated using HadAM3, focusing on the possible suppression of convection by the Californian SST cold pool, the response of the North Pacific subtropical anticyclone to the strength of the North American monsoon and the ‘blocking’ of the mid-latitude westerlies by the Rocky Mountains. The role of the Rockies is examined by integrating the model with modified orography for the Rocky Mountains. Changing the height of the Rockies alters the circulation in a way consistent with the mechanism outlined above. Higher Rocky mountains force the westerlies southwards, inducing descent in the eastern flank of the subtropical anticyclone as the air descends along the sloping isentropes. The relationship between the North American monsoon and the North Pacific subtropical anticyclone is investigated by suppressing the monsoon in HadAM3. The suppression of the monsoon is accomplished by increasing the surface albedo over Mexico, which induces anomalous ascent on the eastward flank of the subtropical anticyclone and anomalous polewards surface winds along the western coast of the North American continent, also providing support for the above hypothesis. The removal of the Californian SST cold pool, however, has a statistically insignificant effect on the model, suggesting that in this model the feedback of the SST cold pool on the eastern flank of the anticyclone is weak.
Resumo:
In the mid-1990s the North Atlantic subpolar gyre warmed rapidly, which had important climate impacts, such as increased hurricane numbers, and changes to rainfall over Africa, Europe and North America. Evidence suggests that the warming was largely due to a strengthening of the ocean circulation, particularly the Atlantic Meridional Overturning Circulation (AMOC). Since the mid-1990s direct and indirect measurements have suggested a decline in the strength of the ocean circulation, which is expected to lead to a reduction in northward heat transport. Here we show that since 2005 a large volume of the upper North Atlantic Ocean has cooled significantly by approximately -0.45C or 1.5x10^22 J, reversing the previous warming trend. By analysing observations and a state-of-the-art climate model, we show that this cooling is consistent with a reduction in the strength of the ocean circulation and heat transport, linked to record low densities in the deep Labrador Sea. The low density in the deep Labrador Sea is primarily due to deep ocean warming since 1995, but a long-term freshening also played a role. The observed upper ocean cooling since 2005 is not consistent with the hypothesis that anthropogenic aerosols directly drive Atlantic temperatures.
Resumo:
Spring into Summer is a novel based on my experiences as a student living in London for a year. The central character, an American under-graduate student studying history, attempts to complete a piece of work by his older brother who is killed in a car accident several months prior to his brother's departure for England. The narrative traces the younger brother's efforts and eventual failure to work on the history; in so doing, he also fails to become more like his older brother whom he greatly loved and admired. Thus, a doppelganger, or "Double" of sorts is used. Most of the action of the novel is set in London. However, the main character also travels to Dublin, York, and several other places in the British Isles, thereby giving a more complete picture of the experiences an American student undergoes while living abroad. During a year which many people might see as an escape from the problems and pressures of everyday life, the central character is forced to undergo a painful process of self-examination, resulting in his reevaluation of himself, his priorities, and his ambitions.