976 resultados para Parental influence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic site classifications are used to represent site effects for estimating hazard parameters (response spectral ordinates) at the soil surface. Seismic site classifications have generally been carried out using average shear wave velocity and/or standard penetration test n-values of top 30-m soil layers, according to the recommendations of the National Earthquake Hazards Reduction Program (NEHRP) or the International Building Code (IBC). The site classification system in the NEHRP and the IBC is based on the studies carried out in the United States where soil layers extend up to several hundred meters before reaching any distinct soil-bedrock interface and may not be directly applicable to other regions, especially in regions having shallow geological deposits. This paper investigates the influence of rock depth on site classes based on the recommendations of the NEHRP and the IBC. For this study, soil sites having a wide range of average shear wave velocities (or standard penetration test n-values) have been collected from different parts of Australia, China, and India. Shear wave velocities of rock layers underneath soil layers have also been collected at depths from a few meters to 180 m. It is shown that a site classification system based on the top 30-m soil layers often represents stiffer site classes for soil sites having shallow rock depths (rock depths less than 25 m from the soil surface). A new site classification system based on average soil thickness up to engineering bedrock has been proposed herein, which is considered more representative for soil sites in shallow bedrock regions. It has been observed that response spectral ordinates, amplification factors, and site periods estimated using one-dimensional shear wave analysis considering the depth of engineering bedrock are different from those obtained considering top 30-m soil layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In animal populations, the constraints of energy and time can cause intraspecific variation in foraging behaviour. The proximate developmental mediators of such variation are often the mechanisms underlying perception and associative learning. Here, experience-dependent changes in foraging behaviour and their consequences were investigated in an urban population of free-ranging dogs, Canis familiaris by continually challenging them with the task of food extraction from specially crafted packets. Typically, males and pregnant/lactating (PL) females extracted food using the sophisticated `gap widening' technique, whereas non-pregnant/non-lactating (NPNL) females, the relatively underdeveloped `rip opening' technique. In contrast to most males and PL females (and a few NPNL females) that repeatedly used the gap widening technique and improved their performance in food extraction with experience, most NPNL females (and a few males and PL females) non-preferentially used the two extraction techniques and did not improve over successive trials. Furthermore, the ability of dogs to sophisticatedly extract food was positively related to their ability to improve their performance with experience. Collectively, these findings demonstrate that factors such as sex and physiological state can cause differences among individuals in the likelihood of learning new information and hence, in the rate of resource acquisition and monopolization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soot generated from the combustion process in diesel engines affect engine tribology. In this paper, two diesel soot samples; from engine exhaust and oil filter are suspended in hexadecane oil and the suspension is used to lubricate a steel ball on steel flat sliding contact at a contact pressure of 1.3 GPa. The friction and wear of the steel flat are recorded. The data are compared with those recorded when the soot is generated by burning ethylene gas. The rationale for the comparatively poor tribology of diesel soot is explored by quantifying the size and shape of primary particles and agglomerates, hardness of single primary soot particles, the crystallinity and surface and near surface chemistry of soot and interparticle adhesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is a continuation of our efforts to quantify the irregular scalar stress signals from the Ananthakrishna model for the Portevin-Le Chatelier instability observed under constant strain rate deformation conditions. Stress related to the spatial average of the dislocation activity is a dynamical variable that also determines the time evolution of dislocation densities. We carry out detailed investigations on the nature of spatiotemporal patterns of the model realized in the form of different types of dislocation bands seen in the entire instability domain and establish their connection to the nature of stress serrations. We then characterize the spatiotemporal dynamics of the model equations by computing the Lyapunov dimension as a function of the drive parameter. The latter scales with the system size only for low strain rates, where isolated dislocation bands are seen, and at high strain rates, where fully propagating bands are seen. At intermediate applied strain rates corresponding to the partially propagating bands, the Lyapunov dimension exhibits two distinct slopes, one for small system sizes and another for large. This feature is rationalized by demonstrating that the spatiotemporal patterns for small system sizes are altered from the partially propagating band types to isolated burst type. This in turn allows us to reconfirm that low-dimensional chaos is projected from the stress signals as long as there is a one-to-one correspondence between the bursts of dislocation bands and the stress drops. We then show that the stress signals in the regime of partially to fully propagative bands have features of extensive chaos by calculating the correlation dimension density. We also show that the correlation dimension density also depends on the system size. A number of issues related to the system size dependence of the Lyapunov dimension density and the correlation dimension density are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanidine derived six-membered C,N] palladacycles of the types (C,N)Pd(mu-OC(O)R)](2) (1a-d), (C,N)Pd(mu-Br)](2) (2a,b), cis-(C,N)PdBr(L)] (3a-d, 4, and 5), and ring contracted guanidine derived five-membered C,N] palladacycle, (C,N)PdBr(C NXy)] (6) were prepared in high yield following the established methods with a view aimed at understanding the influence of the substituents on the aryl rings of the guanidine upon the solid state structure and solution behaviour of palladacycles. Palladacycles were characterised by microanalytical, IR, NMR and mass spectral data. The molecular structures of 1a, 1c, 2a, 2b, 3a, 3c, 3d, and 4-6 were determined by single crystal X-ray diffraction data. Palladacycles 1a and 1c were shown to exist as a dimer in transoid in-in conformation in the solid state but as a mixture of a dimer in major proportion and a monomer (kappa(2)-O,O'-OAc) in solution as deduced from H-1 NMR data. Palladacycles 2a and 2b were shown to exist as a dimer in transoid conformation in the solid state but the former was shown to exist as a mixture of a dimer and presumably a trimer in solution as revealed by a variable temperature H-1 NMR data in conjunction with ESI-MS data. The cis configuration around the palladium atom in 3a, 3c, and 3d was ascribed to steric influence of the aryl moiety of =NAr unit and that in 4-6 was ascribed to antisymbiosis. The solution behaviour of 3d was studied by a variable concentration (VC) H-1 NMR data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates a Wavelet Coefficient based approach using experiments to understand the sensitivity of ultrasonic signals due to parametric variation of a crack configuration in a metal plate. A PZT patch sensor/actuator system integrated to a metal plate with through-thickness crack is used. The proposed approach uses piezoelectric patches, which can be used to both actuate and sense the ultrasonic signals. While this approach leads to more flexibility and reduced cost for larger scalability of the sensor/actuator network, the complexity of the signals increases as compared to what is encountered in conventional ultrasonic NDE problems using selective wave modes. A Damage Index (DI) has been introduced, which is function of wavelet coefficient. Experiments have been carried out for various crack sizes, crack orientations and band-limited tone-burst signal through FIR filter. For a 1 cm long crack interrogated with 20 kHz tone-burst signal, the Damage Index (DI) for the horizontal crack orientation increases by about 70% with respect to that for 135 degrees oriented crack and it increases by about 33% with respect to the vertically oriented crack. The detailed results reported in this paper is a step forward to developing computational schemes for parametric identification of damage using sensor/actuator network and ultrasonic wave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) in their cellular like micro-structure have presented an excellent mechanical energy absorption capacity. Although, several efforts have been progressed to modify the CNT structure for further enhancing their energy absorption capacity but yet no report has revealed the effect of magnetic field on the mechanical behavior of as-grown CNT mat that contains magnetic iron nanoparticles in the form of decorated nanoparticles on the surface or filled inside core of the CNT. We report a significant impact of the presence of magnetic content that modifies the mechanical behavior of the entangled CNT mat in the presence of an external magnetic field. The energy absorption capacity doubles when magnetic field was applied in the radial direction of the CNT mat under uniaxial compression. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of NiTi were deposited by DC magnetron sputtering from an equiatomic alloy target (Ni/Ti: 50/50 at.%). The films were deposited without intentional heating of the substrates. The thickness of the deposited films was approximately 2 mu m. The structure and morphology of NiTi films annealed at different temperatures were analyzed in order to understand the effect of annealing on physical properties of the films. The compositional investigations of fresh and annealed films were also evaluated by energy dispersive X-ray spectroscopy (EDS) and X-ray photo-electron spectroscopy (XPS) techniques. X-ray diffraction (XRD) studies showed that as-deposited films were amorphous in nature whereas annealed films were found to poly-crystalline with the presence of Austenite phase as the dominant phase. AFM investigations showed higher grain size and surface roughness values in the annealed films. In annealed films, the grain size and film roughness values were increased from 10 to 85 nm and 2-18 nm. Film composition measured by EDS were found to 52.5 atomic percent of Ni and 47.5 atomic percent of Ti. XPS investigations, demonstrated the presence of Ni content on the surface of the films, in fresh films, whereas annealed films did not show any nickel. From HR-XPS investigations, it can be concluded that annealed NiTi films have higher tendency to form metal oxide (titanium dioxide) layer on the surface of the films than fresh NiTi films. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogeological and climatic effect on chemical behavior of groundwater along a climatic gradient is studied along a river basin. `Semi-arid' (500-800 mm of mean annual rainfall), `sub-humid' (800-1,200 mm/year) and `humid' (1,200-1,500 mm/year) are the climatic zones chosen along the granito-gneissic plains of Kabini basin in South India for the present analysis. Data on groundwater chemistry is initially checked for its quality using NICB ratio (<+/- 5 %), EC versus TZ+ (similar to 0.85 correlation), EC versus TDS and EC versus TH analysis. Groundwater in the three climatic zones is `hard' to `very hard' in terms of Ca-Mg hardness. Polluted wells are identified (> 40 % of pollution) and eliminated for the characterization. Piper's diagram with mean concentrations indicates the evolution of CaNaHCO3 (semi-arid) from CaHCO3 (humid zone) along the climatic gradient. Carbonates dominate other anions and strong acids exceeded weak acids in the region. Mule Hole SEW, an experimental watershed in sub-humid zone, is characterized initially using hydrogeochemistry and is observed to be a replica of entire sub-humid zone (with 25 wells). Extension of the studies for the entire basin (120 wells) showed a chemical gradient along the climatic gradient with sub-humid zone bridging semi-arid and humid zones. Ca/Na molar ratio varies by more than 100 times from semi-arid to humid zones. Semi-arid zone is more silicaceous than sub-humid while humid zone is more carbonaceous (Ca/Cl similar to 14). Along the climatic gradient, groundwater is undersaturated (humid), saturated (sub-humid) and slightly supersaturated (semi-arid) with calcite and dolomite. Concentration-depth profiles are in support of the geological stratification i.e., not approximate to 18 m of saprolite and similar to 25 m of fracture rock with parent gneiss beneath. All the wells are classified into four groups based on groundwater fluctuations and further into `deep' and `shallow' based on the depth to groundwater. Higher the fluctuations, larger is its impact on groundwater chemistry. Actual seasonal patterns are identified using `recharge-discharge' concept based on rainfall intensity instead of traditional monsoon-non-monsoon concept. Non-pumped wells have low Na/Cl and Ca/Cl ratios in recharge period than in discharge period (Dilution). Few other wells, which are subjected to pumping, still exhibit dilution chemistry though water level fluctuations are high due to annual recharge. Other wells which do not receive sufficient rainfall and are constantly pumped showed high concentrations in recharge period rather than in discharge period (Anti-dilution). In summary, recharge-discharge concept demarcates the pumped wells from natural deep wells thus, characterizing the basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoacoustics is the interaction between heat and sound, which are useful in designing heat engines and heat pumps. Research in the field of thermoacoustics focuses on the demand to improve the performance which is achieved by altering operational, geometrical and fluid parameters. The present study deals with improving the performance of twin thermoacoustic prime mover, which has gained the significant importance in the recent years for the production of high amplitude sound waves. The performance of twin thermoacoustic prime mover is evaluated in terms of onset temperature difference, resonance frequency and pressure amplitude of the acoustic waves by varying the resonator length and charge pressures of fluid medium nitrogen. DeltaEC, the free simulation software developed by LANL, USA is employed in the present study to simulate the performance of twin thermoacoustic prime mover. Experimental and simulated results are compared and the deviation is found to be within 10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study analyzes the leachate distribution in the Orchard Hills Landfill, Davis Junction, Illinois, using a two-phase flow model to assess the influence of variability in hydraulic conductivity on the effectiveness of the existing leachate recirculation system and its operations through reliability analysis. Numerical modeling, using finite-difference code, is performed with due consideration to the spatial variation of hydraulic conductivity of the municipal solid waste (MSW). The inhomogeneous and anisotropic waste condition is assumed because it is a more realistic representation of the MSW. For the reliability analysis, the landfill is divided into 10 MSW layers with different mean values of vertical and horizontal hydraulic conductivities (decreasing from top to bottom), and the parametric study is performed by taking the coefficients of variation (COVs) as 50, 100, 150, and 200%. Monte Carlo simulations are performed to obtain statistical information (mean and COV) of output parameters of the (1) wetted area of the MSW, (2) maximum induced pore pressure, and (3) leachate outflow. The results of the reliability analysis are used to determine the influence of hydraulic conductivity on the effectiveness of the leachate recirculation and are discussed in the light of a deterministic approach. The study is useful in understanding the efficiency of the leachate recirculation system. (C) 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a premixed flame is placed within a duct, acoustic waves induce velocity perturbations at the flame's base. These travel down the flame, distorting its surface and modulating its heat release. This can induce self-sustained thermoacoustic oscillations. Although the phase speed of these perturbations is often assumed to equal the mean flow speed, experiments conducted in other studies and Direct Numerical Simulation (DNS) conducted in this study show that it varies with the acoustic frequency. In this paper, we examine how these variations affect the nonlinear thermoacoustic behaviour. We model the heat release with a nonlinear kinematic G-equation, in which the velocity perturbation is modelled on DNS results. The acoustics are governed by linearised momentum and energy equations. We calculate the flame describing function (FDF) using harmonic forcing at several frequencies and amplitudes. Then we calculate thermoacoustic limit cycles and explain their existence and stability by examining the amplitude-dependence of the gain and phase of the FDF. We find that, when the phase speed equals the mean flow speed, the system has only one stable state. When the phase speed does not equal the mean flow speed, however, the system supports multiple limit cycles because the phase of the FDF changes significantly with oscillation amplitude. This shows that the phase speed of velocity perturbations has a strong influence on the nonlinear thermoacoustic behaviour of ducted premixed flames. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceria, because of its excellent redox behavior and oxygen storage capacity, is used as a catalyst for several technologically important reactions. In the present study, different morphologies of nano-CeO2 (rods, cubes, octahedra) were synthesized using the hydrothermal route. An ultrafast microwave-assisted method was used to efficiently attach Pt particles to the CeO2 polyhedra. These nanohybrids were tested as catalysts for the CO oxidation reaction. The CeO2/Pt catalyst with nanorods as the support was found to be the most active catalyst. XPS and IR spectroscopy measurements were carried out in order to obtain a mechanistic understanding and it was observed that the adsorbed carbonates with lower stability on the reactive planes of nanorods and cubes are the major contributor to this enhanced catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous activated-carbons with a large surface-area have been the most common materials for electrical-double-layer capacitors (EDLCs). These carbons having a wide pore distribution ranges from micropores to macropores in conjunction with a random pore connection that facilitates the high specific-capacitance values. Pore distribution plays a central role in controlling the capacitance value of EDLCs, since electrolyte distribution inside the active material mainly depends on the pore distribution. This has a direct influence on the distribution of resistance and capacitance values within the electrode. As a result, preparation of electrodes remains a vital issue in realising high-performance EDLCs. Generally, carbon materials along with some binders are dispersed into a solvent and coated onto the current collectors. This study examines the role of binder solvents used for the carbon-ink preparation on the microstructure of the electrodes and the consequent performance of the EDLCs. It is observed that the physical properties of the binder solvent namely its dielectric constant, viscosity and boiling point have important role in determining the pore-size distribution as well as the microstructure of electrodes which influence their specific capacitance values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of the present work is to analyze the influence of shoulder diameter and plunge depth on the formability of friction stir welded sheets. The base material used for welding and forming was AA6061-T6. Formability evaluation was performed through limiting dome height tests. The forming limit curve, FLC (only in the stretching region), thickness distribution, and strain hardening exponent of the weld region were monitored during formability studies. It is found from the work that the forming limit of friction stir welded sheets is better than unwelded sheets. In general, with an increase in shoulder diameter and plunge depth, the forming limit is found to improve considerably. With a decrease in thickness gradient severity and an increase in strain hardening exponent (n) of the weld region, the forming limit is found to increase. The increase in n value of the weld region is believed to occur because of the reduction in dislocation density. The maximum thickness difference is higher in the retreating side, rather than in the advancing side, of the weld. This is due to the differential straining and hardness levels attained by both sides during friction stir welding.