963 resultados para Palaeomagnetism Applied to Geologic Processes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desertification is a critical issue for Mediterranean drylands. Climate change is expected to aggravate its extension and severity by reinforcing the biophysical driving forces behind desertification processes: hydrology, vegetation cover and soil erosion. The main objective of this thesis is to assess the vulnerability of Mediterranean watersheds to climate change, by estimating impacts on desertification drivers and the watersheds’ resilience to them. To achieve this objective, a modeling framework capable of analyzing the processes linking climate and the main drivers is developed. The framework couples different models adapted to different spatial and temporal scales. A new model for the event scale is developed, the MEFIDIS model, with a focus on the particular processes governing Mediterranean watersheds. Model results are compared with desertification thresholds to estimate resilience. This methodology is applied to two contrasting study areas: the Guadiana and the Tejo, which currently present a semi-arid and humid climate. The main conclusions taken from this work can be summarized as follows: • hydrological processes show a high sensitivity to climate change, leading to a significant decrease in runoff and an increase in temporal variability; • vegetation processes appear to be less sensitive, with negative impacts for agricultural species and forests, and positive impacts for Mediterranean species; • changes to soil erosion processes appear to depend on the balance between changes to surface runoff and vegetation cover, itself governed by relationship between changes to temperature and rainfall; • as the magnitude of changes to climate increases, desertification thresholds are surpassed in a sequential way, starting with the watersheds’ ability to sustain current water demands and followed by the vegetation support capacity; • the most important thresholds appear to be a temperature increase of +3.5 to +4.5 ºC and a rainfall decrease of -10 to -20 %; • rainfall changes beyond this threshold could lead to severe water stress occurring even if current water uses are moderated, with droughts occurring in 1 out of 4 years; • temperature changes beyond this threshold could lead to a decrease in agricultural yield accompanied by an increase in soil erosion for croplands; • combined changes of temperature and rainfall beyond the thresholds could shift both systems towards a more arid state, leading to severe water stresses and significant changes to the support capacity for current agriculture and natural vegetation in both study areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. On the other hand, Particle swarm optimization (PSO) is a population based stochastic optimization technique inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as GAs. The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. PSO is attractive because there are few parameters to adjust. This paper presents hybridization between a GA algorithm and a PSO algorithm (crossing the two algorithms). The resulting algorithm is applied to the synthesis of combinational logic circuits. With this combination is possible to take advantage of the best features of each particular algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method is proposed to control delayed transitions towards extinction in single population theoretical models with discrete time undergoing saddle-node bifurcations. The control method takes advantage of the delaying properties of the saddle remnant arising after the bifurcation, and allows to sustain populations indefinitely. Our method, which is shown to work for deterministic and stochastic systems, could generally be applied to avoid transitions tied to one-dimensional maps after saddle-node bifurcations.