973 resultados para PHYSICS, ATOMIC, MOLECULAR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is found that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. A strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing indirect evidence of the coherent microwave radiation by the crystals. A similar dependence has been found for a crystal placed between the Fabry-Perot superconducting mirrors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the effect of microwave absorption on the quantum relaxation rate of Mn12 molecular clusters. We have determined first the resonant frequencies of a microwave resonator containing a single crystal of Mn12-Acetate and measured initial isothermal magnetization curves while microwave power was put into the resonator. We have found that the tunneling rate changes one order of magnitude for certain frequencies. This suggests that the microwave shaking of the nuclear spin and molecular vibrational degrees of freedom is responsible for the huge increasing of the tunneling rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time correlation functions between the velocity of a tagged particle and velocities of particles within specified ranges of initial separations have been obtained by molecular dynamics simulation. These correlation functions have allowed us to analyze the momentum transfer between particles in different coordination shells. Two simple liquids at very different densities and two purely repulsive potentials with very different softnesses have been considered. The longitudinal correlations, which are the velocity cross-correlations along the initial direction defined by the centers of two given particles, have been calculated separately. It has been proven that these correlations should be attributed to particles both in front of and behind the central one. As with propagating longitudinal modes, they are strongly dependent on the softness of the potential core. Some characteristic features of the velocity correlation functions after the initial rise should be related to nonlongitudinal correlations. It has been shown that velocity cross-correlations between distinct particles cannot only be attributed to the direct interactions among particles, but also to the motions induced by the movement of a tagged particle on their neighbors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nanometer¿scale oxidation of Si(100) surfaces in air is performed with an atomic force microscope working in tapping mode. Applying a positive voltage to the sample with respect to the tip, two kinds of modifications are induced on the sample: grown silicon oxide mounds less than 5 nm high and mounds higher than 10 nm (which are assumed to be gold depositions). The threshold voltage necessary to produce the modification is studied as a function of the average tip¿to¿sample distance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experiments with amyloid-beta (Aß) peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Aß oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Aß10-35 monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few years, a need to account for molecular flexibility in drug-design methodologies has emerged, even if the dynamic behavior of molecular properties is seldom made explicit. For a flexible molecule, it is indeed possible to compute different values for a given conformation-dependent property and the ensemble of such values defines a property space that can be used to describe its molecular variability; a most representative case is the lipophilicity space. In this review, a number of applications of lipophilicity space and other property spaces are presented, showing that this concept can be fruitfully exploited: to investigate the constraints exerted by media of different levels of structural organization, to examine processes of molecular recognition and binding at an atomic level, to derive informative descriptors to be included in quantitative structure--activity relationships and to analyze protein simulations extracting the relevant information. Much molecular information is neglected in the descriptors used by medicinal chemists, while the concept of property space can fill this gap by accounting for the often-disregarded dynamic behavior of both small ligands and biomacromolecules. Property space also introduces some innovative concepts such as molecular sensitivity and plasticity, which appear best suited to explore the ability of a molecule to adapt itself to the environment variously modulating its property and conformational profiles. Globally, such concepts can enhance our understanding of biological phenomena providing fruitful descriptors in drug-design and pharmaceutical sciences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'algorisme de McLachlan per a l'alineament de dos conjunts de coordenades atòmiques és interpretat sota l'òptica de l'Anàlisi Multivariant, que posa de manifest que el plantejament d'aquest problema és equivalent al de l'anàlisi de Procrustes i que la solució proposada per Kabsch és anàloga a la de Sibson, desenvolupada independentment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme inter-actions and from relativistic mean field theory. VWK consist s of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total en energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g.208 Pb turns out to be only ∼ âˆ6 MeV what is about a factor two or three off the generally accepted value. As an adhoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics simulations were performed to study the ion and water distribution around a spherical charged nanoparticle. A soft nanoparticle model was designed using a set of hydrophobic interaction sites distributed in six concentric spherical layers. In order to simulate the effect of charged functionalyzed groups on the nanoparticle surface, a set of charged sites were distributed in the outer layer. Four charged nanoparticle models, from a surface charge value of âˆ0.035 Cmâˆ2 to ∠0.28 Cmâˆ2, were studied in NaCl and CaCl2 salt solutions at 1 M and 0.1 M concentrations to evaluate the effect of the surface charge, counterion valence, and concentration of added salt. We obtain that Na + and Ca2 + ions enter inside the soft nanoparticle. Monovalent ions are more accumulated inside the nanoparticle surface, whereas divalent ions are more accumulated just in the plane of the nanoparticle surface sites. The increasing of the the salt concentration has little effect on the internalization of counterions, but significantly reduces the number of water molecules that enter inside the nanoparticle. The manner of distributing the surface charge in the nanoparticle (uniformly over all surface sites or discretely over a limited set of randomly selected sites) considerably affects the distribution of counterions in the proximities of the nanoparticle surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results and discussions in this thesis are based on my studies about selfassembled thiol layers on gold, platinum, silver and copper surfaces. These kinds of layers are two-dimensional, one molecule thick and covalently organized at the surface. They are an easy way to modify surface properties. Self-assembly is today an intensive research field because of the promise it holds for producing new technology at nanoscale, the scale of atoms and molecules. These kinds of films have applications for example, in the fields of physics, biology, engineering, chemistry and computer science. Compared to the extensive literature concerning self-assembled monolayers (SAMs) on gold, little is known about the structure and properties of thiolbased SAMs on other metals. In this thesis I have focused on thiol layers on gold, platinum, silver and copper substrates. These studies can be regarded as a basic study of SAMs. Nevertheless, an understanding of the physical and chemical nature of SAMs allows the correlation between atomic structure and macroscopic properties. The results can be used as a starting point for many practical applications. X-ray photoelectron spectroscopy (XPS) and synchrotron radiation excited high resolution photoelectron spectroscopy (HR-XPS) together with time-offlight secondary ion mass spectrometry (ToF-SIMS) were applied to investigate thin organic films formed by the spontaneous adsorption of molecules on metal surfaces. Photoelectron spectroscopy was the main method used in these studies. In photoelectron spectroscopy, the sample is irradiated with photons and emitted photoelectrons are energy-analyzed. The obtained spectra give information about the atomic composition of the surface and about the chemical state of the detected elements. It is widely used in the study of thin layers and is a very powerful tool for this purpose. Some XPS results were complemented with ToF-SIMS measurements. It provides information on the chemical composition and molecular structure of the samples. Thiol (1-Dodecanethiol, CH3(CH2)11SH) solution was used to create SAMs on metal substrates. Uniform layers were formed on most of the studied metal surfaces. On platinum, surface aligned molecules were also detected in investigations by XPS and ToF-SIMS. The influence of radiation on the layer structure was studied, leading to the conclusion that parts of the hydrocarbon chains break off due to radiation and the rest of the layer is deformed. The results obtained showed differences depending on the substrate material. The influence of oxygen on layer formation was also studied. Thiol molecules were found to replace some of the oxygen from the metal surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are currently under preclinical and clinical trials. The molecular target(s) of these agents, however, is an open question. Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2 protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the development of more specific inhibitors of anti-apoptotic BCL-2 proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simple experiments are proposed for measuring molecular absorption of chromate and dichromate ions using an atomic absorption spectrometer. The experiments can help undergraduate students in instrumental analysis courses understand important aspects involving conceptual and instrumental similarities and differences between frequently used analytical techniques. Hollow cathode lamps were selected with wavelengths in the region of molecular absorption of chromate and dichromate. Calibration curves were obtained and the linear dynamic range was evaluated. Results were compared with those obtained in a molecular absorption spectrometer. The molar absorptivities obtained were also compared.