995 resultados para Oryza-sativa L.
Etr1-1 gene expression alters regeneration patterns in transgenic lettuce stimulating root formation
Resumo:
We have evaluated the transformation efficiency of two lettuce ( Lactuca sativa L.) cultivars, LE126 and Seagreen, using Agrobacterium tumefaciens- mediated gene transfer. Six- day- old cotyledons were co- cultivated with Agrobacterium cultures carrying binary vectors with two different genetic constructs. The first construct contained the beta- glucuronidase gene ( GUS) under the control of the cauliflower mosaic virus 35S promoter ( CaMV 35S), while the second construct contained the ethylene mutant receptor etr1- 1, which confers ethylene insensitivity, under the control of a leaf senescence- specific promoter ( sag12). Tissues co- cultivated with the GUS construct showed strong regeneration potential with over 90% of explants developing callus masses and 85% of the calli developing shoots. Histochemical GUS assays showed that 85.7% of the plants recovered were transgenic. Very different results were observed when cotyledon explants were co- cultivated with Agrobacteria carrying the etr1- 1 gene. There was a dramatic effect on the regeneration properties of the cultured explants with root formation taking place directly from the cotyledon tissue in 34% of the explants and no callus or shoots observed initially. Eventually callus formed in 10% of cotyledons and some organogenic shoots were obtained ( 2.86%). These results indicate that the ethylene insensitivity conferred by the etr1- 1 gene alters the normal pattern of regeneration in lettuce cotyledons, inhibiting the formation of shoots and stimulating root formation during regeneration.
Resumo:
Phytophthora root rot, caused by Phytophthora medicaginis, is a major limitation to lucerne ( Medicago sativa L.) production in Australia and North America. Quantitative trait loci (QTLs) involved in resistance to P. medicaginis were identified in a lucerne backcross population of 120 individuals. A genetic linkage map was constructed for tetraploid lucerne using 50 RAPD ( randomly amplified polymorphic DNA), 104 AFLP (amplified fragment length polymorphism) markers, and one SSR ( simple sequence repeat or microsatellite) marker, which originated from the resistant parent (W116); 13 markers remain unlinked. The linkage map contains 18 linkage groups covering 2136.5 cM, with an average distance of 15.0 cM between markers. Four of the linkage groups contained only either 2 or 3 markers. Using duplex markers and repulsion phase linkages the map condensed to 7 homology groups and 2 unassigned linkage groups. Three regions located on linkage groups 2, 14, and 18, were identified as associated with root reaction and the QTLs explained 6 - 15% of the phenotypic variation. The research also indicates that different resistance QTLs are involved in conferring resistance in different organs. Two QTLs were identified as associated with disease resistance expressed after inoculation of detached leaves. The marker, W11-2 on group 18, identified as associated with root reaction, contributed 7% of the phenotypic variation in leaf response in our population. This marker appears to be linked to a QTL encoding a resistance factor contributing to both root and leaf reaction. One other QTL, not identified as associated with root reaction, was positioned on group 1 and contributed to 6% of the variation. This genetic linkage map provides an entry point for future molecular-based improvement of lucerne in Australia, and markers linked to the QTLs we have reported should be useful for marker-assisted selection for partial resistance to P. medicaginis in lucerne.
Resumo:
The use of morphological data obtained from field (plot test) and glasshouse trials to identify and discriminate among four Iranian and two New Zealand lucerne (Medicago sativa L.) cultivars was investigated, following guidelines established by the International Union for the Protection of New Varieties of Plants (UPOV) for cultivar registration and the Organisation for Economic Co-operation and Development (OECD) for seed certification. Data were collected for terminal leaflet length, width and ratio, angle of stem growth, date of first flowering, stem height at first flowering, flower colour, cutting recovery height, and disease scores. None of these characters were sufficient to identify or discriminate among the six cultivars. The results indicate a need to find cost-effective and efficient laboratory techniques to enhance the assessment of distinctness of lucerne cultivars (UPOV) and for determining cultivar purity for lucerne seed certification (OECD).
Resumo:
The effect of soil puddling on growth of lowland rice (Oryza sativa) and post-rice mungbean (Vigna radiata) was investigated using mini rice beds under controlled glasshouse conditions. Each mini rice bed was approximately 1 m(3) in size. Three different soil types were used: a well-drained, permeable loam; a hardsetting, structurally unstable silty loam; and a medium clay. Rice yields were reduced by low puddling compared with high puddling intensity on the loam but not affected on the heavier textured soils (silty loam and clay). Yield of mungbean was reduced on highly puddle, structurally unstable soil, indicating that puddling should be reduced on structurally unstable soils. Under glasshouse condition where crop establishment was not a limiting factor and plant available water in 0.65 m of soil was 100 mm, mungbean yields of >1 t/ha were achieved. However, under conditions where subsoil water reserves were depleted for the production of vegetative biomass during initial optimal growing condition, grain yield remained well below 1 t/ha.
Resumo:
Cyclotides are peptides from plants of the Rubiaceae and Violaceae families that have the unusual characteristic of a macrocylic backbone. They are further characterized by their incorporation of a cystine knot in which two disulfides, along with the intervening backbone residues, form a ring through which a third disulfide is threaded. The cyclotides have been found in every Violaceae species screened to date but are apparently present in only a few Rubiaceae species. The selective distribution reported so far raises questions about the evolution of the cyclotides within the plant kingdom. In this study, we use a combined bioinformatics and expression analysis approach to elucidate the evolution and distribution of the cyclotides in the plant kingdom and report the discovery of related sequences widespread in the Poaceae family, including crop plants such as rice ( Oryza sativa), maize ( Zea mays), and wheat ( Triticum aestivum), which carry considerable economic and social importance. The presence of cyclotide-like sequences within these plants suggests that the cyclotides may be derived from an ancestral gene of great antiquity. Quantitative RT-PCR was used to show that two of the discovered cyclotide-like genes from rice and barley ( Hordeum vulgare) have tissue-specific expression patterns.
Resumo:
Anthracnose, caused by Colletotrichum trifolii, is one of the most serious diseases influencing lucerne persistence and productivity in eastern Australia. The disease is largely controlled by plant resistance; however, new pathotypes of C. trifolii have developed in Australia, seriously limiting the productive life of susceptible cultivars. This paper describes an incompletely recessive and quantitatively inherited resistance to C. trifolii identified in a clone (W116) from cv. Sequel. S-1, F-1, F-2 and backcross populations of W116 and D (highly susceptible clone) were studied for their reaction to C. trifolii race 1. Resistance was found to be quantitatively inherited, and quantitative trait loci associated with resistance and susceptibility were identified in a backcross population (D x W116) x D using random amplified polymorphic DNA and amplified fragment length polymorphic markers. A multi-locus region on linkage group 4 was found to contribute significantly to the resistance phenotype. The application of DNA markers to allow exploitation of this quantitatively inherited resistance in lucerne breeding is discussed.
Resumo:
A large portion of the world's poor farm in rainfed systems where the water supply is unpredictable and droughts are common. In Thailand there are approximately 6.2 million ha of rain fed lowland rice, which account for 67% of the country's total rice-growing area. This rice system is often characterised by too much and too little water in the same season. Farmers' estimates of their annual losses to drought are as high as 45% in the upper parts of the toposequence. In contrast to irrigated rice systems, gains from crop improvement of rainfed rice have been modest, in part because there has been little effort to breed and select for drought tolerance for the target rainfed environments. The crop improvement strategy being used in Thailand considers three mechanisms that influence yield in the drought prone targets: yield potential as an important mechanism for mild drought (where yield loss is less than 50%), drought escape (appropriate phenology) and drought tolerance traits of leaf water potential, sterility, flower delay and drought response index for more severe drought conditions. Genotypes are exposed to managed drought environments for selection of drought tolerant genotypes. A marker assisted selection (MAS) scheme has been developed and applied for selection of progenies in the backcrossing program. The plant breeding program uses rapid generation advance techniques that enable early yield testing in the target population of environments (TPE) through inter-station (multi-location yield testing) and on-farm trials. A farmer participatory approach has been used to identify the TPE for the breeding program. Four terrace paddy levels have been identified, upper (drought), middle (drought prone to favorable) and lower (flooded). This paper reports the change in the breeding program for the drought prone tainted lowland rice environments of North and Northeast Thailand by incorporating our knowledge on adaptation and on response of rice to drought. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Drought is a major constraint for rice production in the rainfed lowlands in Southeast Asia and Eastern India. The breeding programs for tainted lowland rice in these regions focus on adaptation to a range of drought conditions. However, a method of selection of drought tolerant genotypes has not been established and is considered to be one of the constraints faced by rice breeders. Drought response index (DRI) is based on grain yield adjusted for variation in potential yield and flowering date, and has been used recently, but its consistency among drought environments and hence its usefulness is not certain. In order to establish a selection method and subsequently to identify donor parents for drought resistance breeding, a series of experiments with 15 contrasting genotypes was conducted under well-watered and managed drought conditions at two sites for 5 years in Cambodia. Water level in the field was recorded and used to estimate the relative water level (WLREL) around flowering as an index of the severity of water deficit at the time of flowering for each entry. This was used to determine if DRI or yield reduction was due to drought tolerance or related to the amount of available water at flowering, i.e. drought escape. Grain yield reduction due to drought ranged from 12 to 46%. The drought occurred mainly during the reproductive phase, while four experiments had water stress from the early vegetative stage. There was significant variation for water availability around flowering among the nine experiments and this was associated with variation in mean yield reduction. Genotypic variation in DRI was consistent among most experiments, and genotypic mean DRI ranged from -0.54 to 0.47 (LSD 5% = 0.47). Genotypic variation in DRI was not related to WLREL around flowering in the nine environments. It is concluded that selection for DRI under drought conditions would allow breeders to identify donor lines with high drought tolerance as an important component of breeding better adapted varieties for the rainfed lowlands; two genotypes were identified with high DRI and low yield reduction and were subsequently used in the breeding program in Cambodia. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Carbon (C) sequestration in soils is a means for increasing soil organic carbon (SOC) stocks and is a potential tool for climate change mitigation. One recommended management practice to increase SOC stocks is nitrogen (N) fertilisation, however examples of positive, negative or null SOC effects in response to N addition exist. We evaluated the relative importance of plant molecular structure, soil physical properties and soil ecological stoichiometry in explaining the retention of SOC with and without N addition. We tracked the transformation of 13C pulse-labelled buffel grass (Cenchrus ciliaris L.), wheat (Triticum aestivum L.) and lucerne (Medicago sativa L.) material to the <53 μm silt + clay soil organic C fraction, hereafter named “humus”, over 365-days of incubation in four contrasting agricultural soils, with and without urea-N addition. We hypothesised that: a) humus retention would be soil and litter dependent; b) humus retention would be litter independent once litter C:N ratios were standardised with urea-N addition; and c) humus retention would be improved by urea-N addition. Two and three-way factorial analysis of variance indicated that 13C humus was consistently soil and litter dependent, even when litter C:N ratios were standardised, and that the effect of urea-N addition on 13C humus was also soil and litter dependent. A boosted regression analysis of the effect of 44 plant and soil explanatory variables demonstrated that soil biological and chemical properties had the greatest relative influence on 13C humus. Regression tree analyses demonstrated that the greatest gains in 13C humus occurred in soils of relatively low total organic C, dissolved organic C and microbial biomass C (MBC), or with a combination of relatively high MBC and low C:N ratio. The greatest losses in 13C humus occurred in soils with a combination of relatively high MBC and low total N or increasing C:N ratio. We conclude that soil variables involved in soil ecological stoichiometry exert a greater relative influence on incorporating organic matter as humus compared to plant molecular structure and soil physical properties. Furthermore, we conclude that the effect of N fertilisation on humus retention is dependent upon soil ecological stoichiometry.
Resumo:
Cannabinoids (CBs) can be classified as: phytocannabinoids, the constituents of the Cannabis sativa plant; synthetic cannabinoids lab-synthesized and the endocannabinoids that are endogenous lipid mediators. Cannabinoid compounds activate cannabinoid receptors – CB1 and CB2. The most prevalent psychoactive phytocannabinoid is Δ9tetrahydrocannabinol (THC), but more than 60 different CBs were already identified in the plant. The best characterized endocannabinoids (eCBs) are anandamide (AEA) and 2arachidonoylglycerol (2-AG), that are involved in several physiological processes including synaptic plasticity, pain modulation, energy homeostasis and reproduction. On the other hand, some synthetic cannabinoids that were initially designed for medical research, are now used as drugs of abuse. During the period of placental development, highly dynamic processes of remodeling occur, involving proliferation, apoptosis, differentiation and invasion of trophoblasts. It is known that a tight control of eCBs levels is required for normal pregnancy progression and that eCBs are involved in trophoblast cells turnover. Therefore, by sharing activation of the same receptors, exposure to exocannabinoids either by recreational or medicinal use may lead to alterations in the eCBs levels and in the endocannabinoid system homeostasis In this work, it was studied the impact of CBs in BeWo trophoblastic cells and in primary cultures of human cytotrophoblasts. Cells were treated for 24 hours with different concentrations of THC, the synthetic cannabinoid WIN‐55,212 (WIN) and 2-AG. Treatment with THC did not affect BeWo cells viability while WIN and 2-AG caused a dose-dependent viability loss. Morphological studies together with biochemical markers indicate that 2-AG is able to induce apoptosis in cytotrophoblasts. On the other hand, morphological studies after acridine orange staining suggest that autophagy may take part in WIN-induced loss of cell viability. All cannabinoids caused a decrease in mitochondrial membrane potential (Δψm) but only 2-AG led to ROS/RNS generation, though no changes in glutathione levels were observed. In addition, ER-stress may be involved in the 2-AG induced-oxidative stress, as preliminary results point to an increase in CCAAT-enhancer-binding protein homologous protein (CHOP) expression. Besides the decrease in cell viability, alterations in cell cycle progression were observed. WIN treatment induced a cell cycle arrest in G0/G1 phase, whereas 2-AG induced a cell cycle arrest in G2/M phase. Here it is reinforced the relevance of cannabinoid signaling in fundamental processes of cell proliferation and cell death in trophoblast cells. Since cannabis-based drugs are the most consumed illicit drugs worldwide and some of the most consumed recreational drugs by pregnant women, this study may contribute to the understanding of the impact of such substances in human reproduction.
Resumo:
Introdução e Objetivos: Nos últimos anos tem-se verificado um aumento na procura de sementes oleaginosas, sobretudo de girassol, sésamo, linhaça e pevides de abóbora, porque o seu consumo está associado a efeitos benéficos para a saúde. Recentemente, surgiram no mercado "novas" sementes que agora fazem parte da nossa alimentação, como por exemplo, as sementes de chia e de papoila. Normalmente, este tipo de produtos são adicionados a outros alimentos como batidos, iogurtes, sumos de fruta, ou são usados como ingredientes na produção de produtos de padaria e/ou pastelaria. O objetivo deste trabalho foi determinar o perfil de ácidos gordos de diferentes tipos de sementes que estão frequentemente disponíveis no mercado Português. Material e Métodos: Foram adquiridas em 2015, nas superfícies comerciais e ervanárias da região de Lisboa, oito tipos de sementes. Determinou-se o perfil de ácidos gordos por cromatografia gasosa das seguintes amostras: Papoila (Papaver somniferum L.), chia (Salvia hispanica), alpista (Phalaris canariensis L.), cânhamo (Cannabis sativa L.), abóbora (Cucurbita L.), girassol (Helianthus annuus L.), sésamo (Sesamum indicum L.) e linhaça (Linum usitatissimum L.). Resultados e Discussão: Verificou-se que para as sementes de linhaça e chia o principal ácido gordo foi o ácido alfa-linolnico (C18:3, n3), com valores que variaram entre 45,9% e 64,4% do total de ácidos gordos, para sementes de linhaça e sementes de chia, respetivamente. Para as restantes amostras o principal ácido gordo foi o ácido linoleico (C18:2, n6). As sementes de papoila apresentaram o maior teor de ácido linoleico (71,6% do total de ácidos gordos), e as sementes de sésamo apresentaram o teor mais elevado de ácido oleico (39,6% do total de ácidos gordos). Conclusões: Todas as sementes analisadas apresentam um perfil de ácidos gordos saudável, sendo estes sobretudo ácidos gordos insaturados relacionados com efeitos benéficos na prevenção de doenças cardiovasculares. Este estudo fornece novos dados sobre o perfil de ácidos gordos de sementes oleaginosas amplamente disponíveis, que poderão ser úteis para avaliar o padrão alimentar da população Portuguesa, mas também para o desenvolvimento de futuras recomendações e orientações alimentares.
Resumo:
Avaliou-se a influência da disposição de mangueiras gotejadoras nos canteiros e a injeção ou não de cloro na água de irrigação, nas condições sanitárias do solo e da alface americana irrigada (Lactuca sativa L.) com águas receptoras de efluentes urbanos. Foram realizadas análises microbiolgicas de amostras de água do solo e da alface, no decorrer de todo o ciclo de cultivo. Objetivou-se determinar a possível existência de Salmonella spp. e de formas evolutivas de parasitos humanos e a quantidade de coliformes fecais, em pontos e épocas diferentes do experimento, impedindo assim o consumo da alface. Os resultados não indicaram a presença dos dois primeiros em nenhuma das amostras, mas sim de parasitos não humanos (nematóides) de vida livre no solo. em relação à quantidade de coliformes fecais (NMP ml-1), o valor encontrado na cultura atende às exigências da Secretaria de Vigilncia Sanitária do Ministério da Saúde brasileiro, porém a presença dos nematóides em quantidades superiores ao permitido pela Organização Mundial de Saúde (OMS) inviabiliza o seu consumo.
Resumo:
Mestrado em Engenharia Agronómica - Especialização em Proteção das plantas - Instituto Superior de Agronomia - UL
Resumo:
Origem; Melhoramento genético; Informações técnicas; Características agronômicas; Resistência às doenças; Recomendações técnicas; Manejo recomendado; Região indicada; Comparativo de produtividade; Um alimento especial.
Resumo:
A rotação de culturas é uma prática agronómica importante em todos os sistemas de agricultura. A alternância de culturas de espécies com características distintas ao nível morfolgico (sistema radical), ciclo vegetativo (épocas distintas de sementeira e colheita) e ao nível da sua resistência a pragas e doenças, contribui para o aumento da melhoria das características físicas, químicas e biolgicas dos solos. A rotação de culturas pode melhorar a estrutura do solo, quer pela introdução de matéria orgânica, quer pela porosidade biolgica criada pelas raízes das culturas. O aumento da porosidade biolgica conduzirá a uma maior infiltração da água no solo com consequência na redução do escoamento superficial e portanto, da erosão hídrica. O acréscimo da porosidade biolgica no solo pelas raízes é de extrema importância, principalmente em sistemas de mobilização nula (sementeira directa). A utilização de plantas leguminosas, como por exemplo a Vicia sativa L. (vicia ou ervilhaca) a Lupinus luteus L.(tremocilha), o Cicer arietinum L. (grão-de-bico) a Pisum sativum L. (ervilha), etc., na rotação, favorecerá o incremento de azoto no solo, o qual será favorável ao crescimento das gramíneas com redução dos seus custos de produção. Outro aspecto extremamente importante da rotação de culturas prende-se com a melhor distribuição do parque de máquinas e da mão-de-obra ao longo do ano, fazendo-se alternar culturas com épocas de sementeira e de colheita diferentes, como por exemplo o Helianthus annuus L. (girassol) que é uma cultura de primavera-verão, o trigo mole (Triticum aestivum L.) e a cevada dística (Hordeum distichum L.) que são culturas de outono-inverno, etc.