965 resultados para Oregano extracts
Resumo:
Microorganisms capable of degrading dl-synephrine were isolated from soil of Citrus gardens by enrichment culture, with dl-synephrine as the sole source of carbon and nitrogen. An organism which appears to be an arthrobacter, but which cannot be identified with any of the presently recognized species was predominant in these isolates. It was found to metabolize synephrine by a pathway involving p-hydroxyphenylacetaldehyde, p-hydroxyphenylacetic acid, and 3,4-dihydroxyphenylacetic acid as intermediates. Some of the enzymes of this pathway were demonstrated in cell-free extracts. An aromatic oxygenase, which could also be readily obtained in a cell-free system, was found to degrade 3,4-dihydroxyphenylacetic acid by meta cleavage.
Resumo:
The relative rôles of FSH and LH in ovulation induction in immature and adult cycling rats and hamsters have been evaluated. Both heterologous purified pituitary hormones and homologous crude pituitary extracts have been used as ovulatory stimuli in immature animals primed with PMSG. Well-characterized FSH and LH antisera have been used in the above model systems to achieve specific neutralization of FSH and LH. The present study revealed that LH is the physiological trigger needed for induction of ovulation in both rats and hamsters and FSH cannot, by itself, induce ovulation in the total absence of LH.
Resumo:
An inducible Image -mandelate-4-hydroxylase has been partially purified from crude extracts of Pseudomonas convexa. This enzyme catalyzed the hydroxylation of Image -mandelic acid to 4-hydroxymandelic acid. It required tetrahydropteridine, NADPH, Fe2+, and O2 for its activity. The approximate molecular weight of the enzyme was assessed as 91,000 by gel filtration on Sephadex G-150. The enzyme was optimally active at pH 5.4 and 38 °C. A classical Michaelis-Menten kinetic pattern was observed with Image -mandelate, NADPH, and ferrous sulfate and Km values for these substrates were found to be 1 × 10−4, 1.9 × 10−4, and 4.7 × 10−5 Image , respectively. The enzyme is very specific for Image -mandelate as substrate. Thiol inhibitors inhibited the enzyme reaction, indicating that the sulfhydryl groups may be essential for the enzyme action. Treatment of the partially purified enzyme with denaturing agents inactivated the enzyme.
Resumo:
The crude extracts of 3-day-old etiolated seedlings of Lathyrus sativus contained two S-adenosyl-L-methionine decarboxylase activities. The artifactual putrescine-dependent activity was due to the H2O2 generated by diamine oxidase (EC 1.4.3.6) of this plant system and was inhibited by catalase. This observation was confirmed by using an electrophoretically and immunologically homogeneous preparation of L. sativus diamine oxidase. In the presence of putrescine, diamine oxidase, in addition to S-adenosylmethionine, decarboxylated L-lysine, L-arginine, L-ornithine, L-methionine and L-glutamic acid to varying degrees. The decarboxylation was not metal-ion dependent. The biosynthetic S-adenosylmethionine decarboxylase (EC 4.1.1.21) was detected after removing diamine oxidase specifically from the crude extracts by employing an immunoaffinity column. This Mg2+ -dependent decarboxylase was not stimulated by putrescine or inhibited by catalase. The enzyme activity was inhibited by semicarbazide, 4-bromo-3-hydroxybenzoylamine dihydrogen phosphate and methylglyoxal-bis (guanylhydrazone). It was largely localized in the shoots of the etiolated seedlings and was purified 40-fold by employing a p-hydroxymercuribenzoate/AH-Sepharose affinity column, which also separated the decarboxylase activity from spermidine synthase.
Resumo:
An inducible benzoate-4-hydroxylase has been partially purified from crude extracts of the mycelial felts of Aspergillus niger. This enzyme catalyzes the transformation of benzoate to p-hydroxybenzoate with equimolar consumption of NADPH and O2. It requires tetrahydropteridine as a prosthetic group. The optimum activity was found at pH 6.2 with a Km value at 30°C of 1.6 · 10−4 M for NADPH and 1.3 · 10−4 M for benzoate. Fe2+ (iron) is required for the enzyme activity. The enzyme is stabilized by the inclusion of benzoate, EDTA and glutathione in the extracting buffer. The enzyme is specific for benzoate as substrate. Sulfhydryl group(s) are essential for enzyme activity as indicated by p-chloromercuri-benzoate and N-ethylmaleimide inactivation. Benzoate-4-hydroxylase activity is decreased in the mycelial felts of Aspergillus niger grown in the presence of higher concentrations of benzoate. Maximum activity of the enzyme was observed at 36 h after inoculation.