974 resultados para Olfactory Lobes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 78A50

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies have attempted to identify the different cognitive components of body representation (BR). Due to methodological issues, the data reported in these studies are often confusing. Here we summarize the fMRI data from previous studies and explore the possibility of a neural segregation between BR supporting actions (body-schema, BS) or not (non-oriented-to-action-body-representation, NA). We performed a general activation likelihood estimation meta-analysis of 59 fMRI experiments and two individual meta-analyses to identify the neural substrates of different BR. Body processing involves a wide network of areas in occipital, parietal, frontal and temporal lobes. NA selectively activates the somatosensory primary cortex and the supramarginal gyrus. BS involves the primary motor area and the right extrastriate body area. Our data suggest that motor information and recognition of body parts are fundamental to build BS. Instead, sensory information and processing of the egocentric perspective are more important for NA. In conclusion, our results strongly support the idea that different and segregated neural substrates are involved in body representations orient or not to actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Degeneration of white matter fibre tracts occurs in several neurodegenerative disorders and results in various histological abnormalities including loss of axons, vacuolation, gliosis, axonal varicosities and spheroids, corpora amylacea, extracellular protein deposits, and glial inclusions (GI). This chapter describes quantitative studies that have been carried out on white matter pathology in a variety of neurodegenerative disease. First, in Alzheimer’s disease (AD), axonal loss quantified in histological sections stained with toluidine blue, occurs in several white matter fibre tracts including the optic nerve, olfactory tract, and corpus callosum. Second, in Creutzfeldt-Jakob disease (CJD), sections of cerebral cortex stained with haematoxylin and eosin (H/E) or immunolabelled with antibodies against the disease form of prion protein (PrPsc), reveal extensive vacuolation, gliosis of white matter, and deposition of PrPsc deposits. Third, GI immunolabelled with antibodies against various pathological proteins including tau, -synuclein, TDP-43, and FUS, have been recorded in white matter of a number of disorders including frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and neuronal intermediate filament inclusion disease (NIFID). Axonal varicosities have also been observed in NIFID. There are two important questions regarding white matter pathology that need further investigation: (1) what is the relative importance of white and gray matter pathologies in different disorders and (2) do white matter abnormalities precede or are they the consequence of gray matter pathology?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Factors associated with survival were studied in 84 neuropathologically documented cases of the pre-senile dementia frontotemporal dementia lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). Kaplan-Meier survival analysis estimated mean survival as 7.9 years (range: 1-19 years, SD = 4.64). Familial and sporadic cases exhibited similar survival, including progranulin (GRN) gene mutation cases. No significant differences in survival were associated with sex, disease onset, Braak disease stage, or disease subtype, but higher survival was associated with lower post-mortem brain weight. Survival was significantly reduced in cases with associated motor neuron disease (FTLD-MND) but increased with Alzheimer's disease (AD) or hippocampal sclerosis (HS) co-morbidity. Cox regression analysis suggested that reduced survival was associated with increased densities of neuronal cytoplasmic inclusions (NCI) while increased survival was associated with greater densities of enlarged neurons (EN) in the frontal and temporal lobes. The data suggest that: (1) survival in FTLD-TDP is more prolonged than typical in pre-senile dementia but shorter than some clinical subtypes such as the semantic variant of primary progressive aphasia (svPPA), (2) MND co-morbidity predicts poor survival, and (3) NCI may develop early and EN later in the disease. The data have implications for both neuropathological characterization and subtyping of FTLD-TDP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is directed towards optimizing the radiation pattern of smart antennas using genetic algorithms. The structure of the smart antennas based on Space Division Multiple Access (SDMA) is proposed. It is composed of adaptive antennas, each of which has adjustable weight elements for amplitudes and phases of signals. The corresponding radiation pattern formula available for the utilization of numerical optimization techniques is deduced. Genetic algorithms are applied to search the best phase-amplitude weights or phase-only weights with which the optimal radiation pattern can be achieved. ^ One highlight of this work is the proposed optimal radiation pattern concept and its implementation by genetic algorithms. The results show that genetic algorithms are effective for the true Signal-Interference-Ratio (SIR) design of smart antennas. This means that not only nulls can be put in the directions of the interfering signals but also simultaneously main lobes can be formed in the directions of the desired signals. The optimal radiation pattern of a smart antenna possessing SDMA ability has been achieved. ^ The second highlight is on the weight search by genetic algorithms for the optimal radiation pattern design of antennas having more than one interfering signal. The regular criterion for determining which chromosome should be kept for the next step iteration is modified so as to improve the performance of the genetic algorithm iteration. The results show that the modified criterion can speed up and guarantee the iteration to be convergent. ^ In addition, the comparison between phase-amplitude perturbations and phase-only perturbations for the radiation pattern design of smart antennas are carried out. The effects of parameters used by the genetic algorithm on the optimal radiation pattern design are investigated. Valuable results are obtained. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How experience alters neuronal ensemble dynamics and how locus coeruleus-mediated norepinephrine release facilitates memory formation in the brain are the topics of this thesis. Here we employed a visualization technique, cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH), to assess activation patterns of neuronal ensembles in the olfactory bulb (OB) and anterior piriform cortex (aPC) to repeated odor inputs. Two associative learning models were used, early odor preference learning in rat pups and adult rat go-no-go odor discrimination learning. With catFISH of an immediate early gene, Arc, we showed that odor representation in the OB and aPC was sparse (~5-10%) and widely distributed. Odor associative learning enhanced the stability of the rewarded odor representation in the OB and aPC. The stable component, indexed by the overlap between the two ensembles activated by the rewarded odor at two time points, increased from ~25% to ~50% (p = 0.004-1.43E⁻4; Chapter 3 and 4). Adult odor discrimination learning promoted pattern separation between rewarded and unrewarded odor representations in the aPC. The overlap between rewarded and unrewarded odor representations reduced from ~25% to ~14% (p = 2.28E⁻⁵). However, learning an odor mixture as a rewarded odor increased the overlap of the component odor representations in the aPC from ~23% to ~44% (p = 0.010; Chapter 4). Blocking both α- and β-adrenoreceptors in the aPC prevented highly similar odor discrimination learning in adult rats, and reduced OB mitral and granule ensemble stability to the rewarded odor. Similar treatment in the OB only slowed odor discrimination learning. However, OB adrenoceptor blockade disrupted pattern separation and ensemble stability in the aPC when the rats demonstrated deficiency in discrimination (Chapter 5). In another project, the role of α₂-adrenoreceptors in the OB during early odor preference learning was studied. OB α2-adrenoceptor activation was necessary for odor learning in rat pups. α₂-adrenoceptor activation was additive with β-adrenoceptor mediated signalling to promote learning (Chapter 2). Together, these experiments suggest that odor representations are highly adaptive at the early stages of odor processing. The OB and aPC work in concert to support odor learning and top-down adrenergic input exerts a powerful modulation on both learning and odor representation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose two new approaches to enhance the spectral compression process arising from nonlinear pulse propagation in an optical fibre. We numerically show that an additional sinusoidal temporal phase modulation of the pulse enables efficient reduction of the intensity level of side lobes in the spectrum. Another strategy is to select a regime of propagation in which normal group-velocity dispersion reshapes the initial stretched pulse to a near-Fourier-transform-limited rectangular waveform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new, simple approach to enhance the spectral compression process arising from nonlinear pulse propagation in an optical fiber. We numerically show that an additional sinusoidal temporal phase modulation of the pulse enables efficient reduction of the intensity level of the side lobes in the spectrum that are produced by the mismatch between the initial linear negative chirp of the pulse and the self-phase modulation-induced nonlinear positive chirp. Remarkable increase of both the extent of spectrum narrowing and the quality of the compressed spectrum is afforded by the proposed approach across a wide range of experimentally accessible parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a simple approach to enhance the spectral compression arising from nonlinear pulse propagation in a Kerr medium. We numerically show that an additional sinusoidal temporal phase modulation enables efficient reduction of the intensity level of spectral side lobes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in olfactory-mediated behaviour caused by elevated CO2 levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO2 will impact the other key part of the predator-prey interaction - the predators. We investigated the effects of elevated CO2 and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO2 levels or one of two elevated CO2 levels (~600 µatm or ~950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO2 and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO2treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO2 treatment and feeding activity was lower for fish in the mid CO2treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO2 treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO2 acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3 and Cl levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO2) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control seawater (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO2-induced ocean acidification. Larvae became strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Individuals with chronic obstructive pulmonary disease (COPD) have higher than normal ventilatory equivalents for carbon dioxide (VE/VCO2) during exercise. There is growing evidence that emphysema on thoracic computed tomography (CT) scans is associated with poor exercise capacity in COPD patients with only mild-to-moderate airflow obstruction. We hypothesized that emphysema is an underlying cause of microvascular dysfunction and ventilatory inefficiency, which in turn contributes to reduced exercise capacity. We expected ventilatory inefficiency to be associated with a) the extent of emphysema; b) lower diffusing capacity for carbon monoxide; c) a reduced pulmonary blood flow response to exercise; and d) reduced exercise capacity. Methods: In a cross-sectional study, 19 subjects with mild-to-moderate COPD (mean ± SD FEV1= 82 ± 13% predicted, 12 GOLD grade 1) and 26 age-, sex-, and activity-matched controls underwent a ramp-incremental symptom-limited exercise test on a cycle ergometer. Ventilatory inefficiency was assessed by the minimum VE/VCO2 value (nadir). A subset of subjects also completed repeated constant work rate exercise bouts with non-invasive measurements of pulmonary blood flow. Emphysema was quantified as the percentage of attenuation areas below -950 Housefield Units on CT scans. An electronic scoresheet was used to keep track of emphysema sub-types. Results: COPD subjects typically had centrilobular emphysema (76.8 ± 10.1% of total emphysema) in the upper lobes (upper/lower lobe ratio= 0.82 ± 0.04). They had lower peak oxygen uptake (VO2), higher VE/VCO2 nadir and greater dyspnea scores than controls (p<0.05). Lower peak O2 and worse dyspnea were found in COPD subjects with VE/VCO2 nadirs ≥ 30. COPD subjects had blunted increases in pulmonary blood flow from rest to iso-VO2 exercise (p<0.05). Higher VE/VCO2 nadir in COPD subjects correlated with emphysema severity (r= 0.63), which in turn correlated with reduced lung diffusing capacity (r= -0.72) and blunted changes in pulmonary blood flow from rest to exercise (r= -0.69) (p<0.01). Conclusions: Ventilation “wasted” in emphysematous areas is associated with reduced exercise ventilatory efficiency in mild-to-moderate COPD. Exercise ventilatory inefficiency links structure (emphysema) and function (gas transfer) to a key clinical outcome (reduced exercise capacity) in COPD patients with modest spirometric abnormalities.