978 resultados para Oblique ligament
Resumo:
Gymnotus tiquie, new species, is described from the Rio Tiquie, a tributary of the Uaupes (Vaupes) in the upper Negro basin, Amazonas, Brazil. The new species was collected in non-floodplain (terra firme) streams, where it occurs sympatrically and syntopically with two geographically widespread congeners, the type species of the genus, G. carapo, and G. coropinae. The new species is diagnosed by a unique combination of morphometric, meristic, and osteological traits, and by a characteristic color pattern in which the dark oblique pigment bands, diverse in shape and design, are divided into band-pairs along the length of the body, in which the band-pairs are often recurved (dorsally concave), more variable, and often reticulated in the abdominal region, and in which the pale inter-bands meet at the dorsal midline along most of the length of the body. Gymnotus tiquie is a member of the G. pantherinus species group, with which it shares the presence of one (vs. two) pore in the dorsolateral portion of the preopercle (except in G. pantanal and G. anguillaris), needle-shaped (vs. conical or arrowhead-shaped) teeth on the dentary and premaxilla, and a slender body (BD 5.6-10.6% HL vs. deep 8.7-13.5%, except G. chaviro, G. curupira, G. varzea, G. chimarrao, G. maculosus, G. henni, and G. inaequilabiatus that also have a slender body). Gymnotus tiquie is most similar in overall appearance to G. cataniapo of the upper Orinoco. These two species share three unique features within the G. pantherinus group: dark band-pairs with wavy irregular margins along the length of the body, a long body cavity with 45 or more pre-caudal vertebrae, and a darkly pigmented membrane in the caudal region of the anal fin.
Resumo:
We describe the occurrence of non-marine bivalves in exposures of the Middle Permian (Capitanian) Brenton Loch Formation on the southern shore of Choiseul Sound, East Falklands. The bivalves are associated with ichnofossils and were collected from a bed in the upper part of the formation, within a 25 cm thick interval of dark siltstones and mudstones with planar lamination, overlain by massive sandstones. The shells are articulated, with the valves either splayed open or closed. At the top of the succession, mudstone beds nearly 1.5 m above the bivalve-bearing layers yielded well-preserved Glossopteris sp. cf. G. communis leaf fossils. The closed articulated condition of some shells indicates preservation under high sedimentation rates with low residence time of bioclasts at the sediment/water interface. However, the presence of specimens with splayed shells is usually correlated to the slow decay of the shell ligament in oxygen-deficient bottom waters. The presence of complete carbonized leaves of Glossopteris associated with the bivalve-bearing levels also suggests a possibly dysoxic-anoxic bottom environment. Overall, our data suggest that the bivalves were preserved by abrupt burial, possibly by distal sediment flows into a Brenton Loch lake, and may represent autochthonous to parautochthonous fossil accumulations. The shells resemble those of anthracosiids and are herein assigned to Palaeanodonta sp. aff. P. dubia, a species also found in the Permian succession of the Karoo Basin, South Africa. Our results confirm that (a) the true distributions in space and time of all Permian non-marine (freshwater) bivalves are not yet well known, and (b) there is no evidence for marine conditions in the upper part of the Brenton Loch Formation.
Resumo:
The basement rock of the Pampean flat-slab (Sierras Pampeanas) in the Central Andes was uplifted and rotated in the Cenozoic era. The Western Sierras Pampeanas are characterised by meta-igneous rocks of Grenvillian Mesoproterozoic age and metasedimentary units metamorphosed in the Ordovician period. These rocks, known as the northern Cuyania composite terrane, were derived from Laurentia and accreted toward Western Gondwana during the Early Paleozoic. The Sierra de Umango is the westernmost range of the Western Sierras Pampeanas.This range is bounded by the Devonian sedimentary rocks of the Precordillera on the western side and Tertiary rocks from the Sierra de Maz and Sierra del Espinal on the eastern side and contains igneous and sedimentary rocks outcroppings from the Famatina System on the far eastern side. The Sierra de Umango evolved during a period of polyphase tectonic activity, including an Ordovician collisional event, a Devonian compressional deformation, Late Paleozoic and Mesozoic extensional faulting and sedimentation (Paganzo and Ischigualasto basins) and compressional deformation of the Andean foreland during the Cenozoic. A Nappe System and an important shear zone, La Puntilla-La Falda Shear Zone (PFSZ), characterise the Ordovician collisional event, which was related to the accretion of Cuyania Terrane to the proto-Andean margin of Gondwana. Three continuous deformational phases are recognised for this event: the D1 phase is distinguished by relics of 51 preserved as internal foliation within interkinematic staurolite por-phyroblasts and likely represents the progressive metamorphic stage; the D2 phase exhibits P-T conditions close to the metamorphic peak that were recorded in an 52 transposition or a mylonitic foliation and determine the main structure of Umango; and the D3 phase is described as a set of tight to recumbent folds with S3 axial plane foliation, often related to thrust faults, indicating the retrogressive metamorphic stage. The Nappe System shows a top-to-the S/SW sense direction of movement, and the PFSZ served as a right lateral ramp in the exhumation process. This structural pattern is indicative of an oblique collision, with the Cuyania Terrane subducting under the proto-Andean margin of Gondwana in the NE direction. This continental subduction and exhumation lasted at least 30 million years, nearly the entire Ordovician period, and produced metamorphic conditions of upper amphibolite-to-granulite facies in medium- to high-pressure regimes. At least two later events deformed the earlier structures: D4 and D5 deformational phases. The D4 deformational phase corresponds to upright folding, with wavelengths of approximately 10 km and a general N-S orientation. These folds modified the S2 surface in an approximately cylindrical manner and are associated with exposed, discrete shear zones in the Silurian Guandacolinos Granite. The cylindrical pattern and subhorizontal axis of the D4 folds indicates that the S2 surface was originally flat-lying. The D4 folds are responsible for preserving the basement unit Juchi Orthogneiss synformal klippen. This deformation corresponds to the Chanica Tectonic during the interval between the Devonian and Carboniferous periods. The D5 deformational phase comprehends cuspate-lobate shaped open plunging folds with E W high-angle axes (D5 folds) and sub-vertical spaced cleavage. The D5 folds and related spaced cleavage deformed the previous structures and could be associated with uplifting during the Andean Cycle. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Knowledge of anatomical variations of the musculoskeletal system is important for interpreting unusual clinical presentations. We observed the presence of an abnormal extensor indicis muscle in the left hand of an adult male cadaver. In this case, the muscle comes from the ligament and over the scaphoideum and trapezoideum bones and continues after the short muscle belly; it is attached to the dorsal aponeurosis of the indicis. This muscular disposition was described in other studies which demonstrated approximately 1.0% of incidence. Clinically, this anatomical variation may be associated with pain and swelling at the back of the hand. In these cases symptoms tend to increase due to mechanical stress and can be confused with the presence of a dorsal synovial cyst. This report will help clinicians, surgeons, occupational and physical therapists formulate better clinical or surgical decisions when presented with a rare anatomical variation.
Resumo:
Low-level laser therapy is a tool employed in the management of post-operative inflammation process and in the enhancement of reparative process. The aim of the study was to perform histological evaluation of dental and periodontal ligament of rats central upper-left incisor teeth re-implanted and irradiated with low-level laser (InGaAl, 685 nm, 50 J/cm(2)) 15, 30, and 60 days after re-implantation. Seventy-two male rats had the central upper left incisor removed and kept for 15 min on dry gauze before replantation. Laser was irradiated over the root surface and empty alveolus prior replantation and over surrounding mucosa after the re-implantation. After histological procedures, all slices were analyzed regarding external resorption area and histological aspects. We observed an increase of root resorption (p < 0.05) in the control group compared to the laser group at 15, 30, and 60 days. These results showed that the laser groups developed less root resorption areas than the control group in all experimental periods. Additionally, histological analysis revealed less inflammatory cells and necrotic areas in laser groups.
Resumo:
This study reports the case of a patient with a severely resorbed mandible who was treated without a bone graft, using short implants, internal rigid fixation, rhBMP-2 and beta-tricalcium phosphate. A 76-year-old woman, with a severely resorbed mandible (less than 3 mm), reported a history of nearly 25 years of complete edentulism and consecutive treatment failures, with total bilateral exposed inferior alveolar nerves and complete bone resorption of the inferior border in some areas. The treatment of choice was the placement of a 2.0 mm thick unilock bone plate (MatrixMandible, Synthes Maxillofacial, Paoli, PA, USA), to reinforce the mandible. Eight short implants with a regular platform (Nobel Biocare, Goteborg, Sweden) were placed: three on the external oblique line on both sides and two on the symphysis. In order to augment mandible height and coat the exposed thread of the anterior implants, rhBMP-2 (Infuse Bone, Meditronic Sofamor Danek, Memphis, TN, USA) and beta-tricalcium phosphate (Cerasorb; Curasan, Kleinostheim, Germany) were used. Four 1.3 mm L miniplates were placed to support the graft. 14 months after surgery, the patient was satisfied and had excellent function without complications.
Resumo:
Objective: The aim of this study was to assess the short term effect of ethanol administration on periodontal disease in rats. Design: Rats received either ethanol 2 g/kg or water by gastric gavage twice a day. On the fifth day ligatures were tied around the molars of half of the rats to induce periodontitis. After 7 days gingival tissue was removed and assayed for inflammatory markers. Finally, hemi-mandibles were extracted to evaluate bone loss by histomorphometrical techniques. Results: The experimental periodontitis increased significantly the mRNA expression (p < 0.001) and activity (p < 0.001) of inducible nitric oxide synthase (iNOS) in the gingival tissue, whilst short time ethanol administration increased iNOS activity (p < 0.05) and produced an additive effect on iNOS mRNA expression augmented by periodontitis (p < 0.01). The short time ethanol administration also potentiated the periodontitis stimulatory effect on the mRNA expression of interleukin (IL)-1 beta (p < 0.01 and p < 0.001, in semi-quantitative and real time PCR, respectively) and on the height of periodontal ligament (p < 0.05). However, the ligature-induced periodontitis, but not ethanol administration, increased the prostaglandin E-2 content (p < 0.05) and, diminished the alveolar bone volume (p < 0.05), as compared to sham rats. Conclusion: The present results suggest that ethanol consumption could represent a risk indicator for periodontal disease since augments the expression of inflammatory markers, in healthy rats, and increases them, at short term, during the illness. However, scale longitudinal investigation and more case-control studies are needed to confirm this statement. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This finite element analysis (FEA) compared stress distribution on different bony ridges rehabilitated with different lengths of morse taper implants, varying dimensions of metal-ceramic crowns to maintain the occlusal alignment. Three-dimensional FE models were designed representing a posterior left side segment of the mandible: group control, 3 implants of 11 mm length; group 1, implants of 13 mm, 11 mm and 5 mm length; group 2, 1 implant of 11 mm and 2 implants of 5 mm length; and group 3, 3 implants of 5 mm length. The abutments heights were 3.5 mm for 13- and 11-mm implants (regular), and 0.8 mm for 5-mm implants (short). Evaluation was performed on Ansys software, oblique loads of 365N for molars and 200N for premolars. There was 50% higher stress on cortical bone for the short implants than regular implants. There was 80% higher stress on trabecular bone for the short implants than regular implants. There was higher stress concentration on the bone region of the short implants neck. However, these implants were capable of dissipating the stress to the bones, given the applied loads, but achieving near the threshold between elastic and plastic deformation to the trabecular bone. Distal implants and/or with biggest occlusal table generated greatest stress regions on the surrounding bone. It was concluded that patients requiring short implants associated with increased proportions implant prostheses need careful evaluation and occlusal adjustment, as a possible overload in these short implants, and even in regular ones, can generate stress beyond the physiological threshold of the surrounding bone, compromising the whole system.
Resumo:
Introduction: The ankle sprain is one of the most common injuries in athletes. Direct evaluation of the ligament laxity can be obtained through the objective measurement of extreme passive inversion and eversion movements, but there are few studies on the use of the evaluation of the passive resistive torque of the ankle to assess the capsule and ligaments resistance. Objective: The aim of this study was to compare the inversion and eversion passive torque in athletes with and without ankle sprains history. Method: 32 female basketball and volleyball athletes (16.06 +/- 0.8 years old; 67.63 +/- 8.17 kg; 177.8 +/- 6.47 cm) participated in this study. Their ankles were divided into two groups: control group (29), composed of symptom-free ankles, and ankle sprain group, composed of ankles which have suffered injury (29). The resistive torque at maximum passive ankle movement was measured by the isokinetic dynamometer and the muscular activity by electromyography system. The athletes performed 2 repetitions of inversion and eversion movement at 5, 10 and 20 degrees/s and the same protocol only at maximum inversion movement. Results: The resistive passive torque during the inversion and eversion was lower in the ankle sprain group. This group also showed lower torques at the maximum inversion movement. No differences were observed between inversion and eversion movement. Conclusions: Ankle sprain leads to lower passive torque, indicating reduction of the resistance of the lateral ankle ligaments and mechanical laxity.
Resumo:
PURPOSE. The aim of the present study was to evaluate if a smaller morse taper abutment has a negative effect on the fracture resistance of implant-abutment connections under oblique compressive loads compared to a conventional abutment MATERIALS AND METHODS. Twenty morse taper conventional abutments (4.8 mm diameter) and smaller abutments (3.8 mm diameter) were tightened (20 Ncm) to their respective implants (3.5 x 11 mm) and after a 10 minute interval, implant/abutment assemblies were subjected to static compressive test, performed in a universal test machine with 1 mm/min displacement, at 45 degrees inclination. The maximum deformation force was determined. Data were statistically analyzed by student t test. RESULTS. Maximum deformation force of 4.8 mm and 3.8 mm abutments was approximately 95.33 kgf and 95.25 kgf, respectively, but no fractures were noted after mechanical test. Statistical analysis demonstrated that the evaluated abutments were statistically similar (P=.230). CONCLUSION. Abutment measuring 3.8 mm in diameter (reduced) presented mechanical properties similar to 4.8 mm (conventional) abutments, enabling its clinical use as indicated. [J Adv Prosthodont 2012;4:158-61]
Resumo:
NAKAGAWA, T. H., E. T. U. MORIYA, C. D. MACIEL, and F. V. SERRAO. Frontal Plane Biomechanics in Males and Females with and without Patellofemoral Pain. Med. Sci. Sports &ere., Vol. 44, No. 9, pp. 1747-1755, 2012. Purpose: The study's purpose was to compare trunk, pelvis, hip, and knee frontal plane biomechanics in males and females with and without patellofemoral pain syndrome (PFPS) during stepping. Methods: Eighty recreational athletes were equally divided into four groups: female PFPS, female controls, male PFPS, and male controls. Trunk, pelvis, hip, and knee frontal plane kinematics and activation of the gluteus medius were evaluated at 15 degrees, 30 degrees, 45 degrees, and 60 degrees of knee flexion during the downward and upward phases of the stepping task. Isometric hip abductor torque was also evaluated. Results: Females showed increased hip adduction and knee abduction at all knee flexion angles, greater ipsilateral trunk lean and contralateral pelvic drop from 60 degrees of knee flexion till the end of the stepping task (P = 0.027-0.001), diminished hip abductor torque (P < 0.001), and increased gluteus medius activation than males (P = 0.008-0.001). PFPS subjects presented increased knee abduction at all the angles evaluated; greater trunk, pelvis, and hip motion from 45 of knee flexion of the downward phase till the end of the maneuver; and diminished gluteus medius activation at 60 degrees of knee flexion, compared with controls (P = 0.034-0.001). Females with PFPS showed lower hip abductor torque compared with the other groups. Conclusions: Females presented with altered frontal plane biomechanics that may predispose them to knee injury. PFPS subjects showed frontal plane biomechanics that could increase the lateral patellofemoral joint stress at all the angles evaluated and could increase even more from 45 degrees of knee flexion in the downward phase untill the end of the maneuver. Hip abductor strengthening and motor control training should be considered when treating females with PFPS.
Resumo:
We use the photosensitive chlorine dioxide-iodine-malonic acid reaction-diffusion system to study wavenumber locking of Turing patterns to two-dimensional "square" spatial forcing, implemented as orthogonal sets of bright bands projected onto the reaction medium. Various resonant structures emerge in a broad range of forcing wavelengths and amplitudes, including square lattices and superlattices, one-dimensional stripe patterns and oblique rectangular patterns. Numerical simulations using a model that incorporates additive two-dimensional spatially periodic forcing reproduce well the experimental observations.
Resumo:
Objective: Pulmonary fissures completeness predicts efficacy in endobronchial valves (EBV) implantation, a new lobar volume reduction therapy for severe emphysematous patients. We assessed the incidence of incomplete fissures and the interobserver agreement in its evaluation with MDCT, in severe emphysematous patients prior to EBV implantation. Materials and Methods: Volumetric thin-section CT scans of 35 patients (CODP GOLD 3/4, heterogeneous emphysema) were retrospectively reviewed by 2 pneumologists, 1 general and 2 experienced chest radiologists, independently and blinded for treatment outcome, and the pulmonary fissures were classified as either complete or incomplete. Interobserver agreement was assessed with Kappa index (KI). Results: Agreement between all readers for the left oblique, right oblique and horizontal fissure was, respectively, moderate (KI = 0.53), fair (KI = 0.37) and moderate (KI = 0.42). Highest agreement (99/105 fissures) was observed among experienced radiologists, being for left oblique, right oblique and horizontal, respectively, almost perfect (KI = 0.79), perfect (KI = 1.0) and moderate (KI = 0.52). These 2 reviewers found that all of 35 patients had at least one incomplete fissure, with a proportion of incomplete fissures assigned as 74/65%, 85/85% and 91/88%, respectively for the left oblique, right oblique and horizontal fissures. Conclusions: Pneumologists and radiologists agreed fairly to moderately in fissures analysis, while the experienced chest radiologists reached the highest clinically adequate agreement of 94%. We believe that clinical routine visual analysis of the fissures integrity can be done with a good degree of confidence in MDCT images, and experienced readers might be required. Also, a higher than expected incidence of incomplete fissures was described in our studied population. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Hypophosphatasia (HPP) is the inborn error of metabolism characterized by deficiency of alkaline phosphatase activity, leading to rickets or osteomalacia and to dental defects. HPP occurs from loss-of-function mutations within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNAP). TNAP knockout (Alpl-/-, aka Akp2-/-) mice closely phenocopy infantile HPP, including the rickets, vitamin B6-responsive seizures, improper dentin mineralization, and lack of acellular cementum. Here, we report that lack of TNAP in Alpl-/- mice also causes severe enamel defects, which are preventable by enzyme replacement with mineral-targeted TNAP (ENB-0040). Immunohistochemistry was used to map the spatiotemporal expression of TNAP in the tissues of the developing enamel organ of healthy mouse molars and incisors. We found strong, stage-specific expression of TNAP in ameloblasts. In the Alpl-/- mice, histological, mu CT, and scanning electron microscopy analysis showed reduced mineralization and disrupted organization of the rods and inter-rod structures in enamel of both the molars and incisors. All of these abnormalities were prevented in mice receiving from birth daily subcutaneous injections of mineral-targeting, human TNAP at 8.2?mg/kg/day for up to 44 days. These data reveal an important role for TNAP in enamel mineralization and demonstrate the efficacy of mineral-targeted TNAP to prevent enamel defects in HPP. (C) 2012 American Society for Bone and Mineral Research.
Resumo:
This work combines structural and geochronological data to improve our understanding of the mechanical behaviour of continental crust involving large amount of magma or partially melted material in an abnormally hot collisional belt. We performed a magnetic and geochronological (U/Pb) study on a huge tonalitic batholith from the Neoproterozoic Aracual belt of East Brazil to determine the strain distribution through space and time. Anisotropy of magnetic susceptibility, combined with rock magnetism investigations, supports that the magnetic fabric is a good proxy of the structural fabric. Field measurements together with the magnetic fabrics highlight the presence in the batholith of four domains characterized by contrasted magmatic flow patterns. The western part is characterized by a gently dipping, orogen-parallel (similar to NS) magmatic foliation that bears down-dip lineations, in agreement with westward thrusting onto the Sao Francisco craton. Eastward, the magmatic foliation progressively turns sub-vertical with a lineation that flips from sub-horizontal to sub-vertical over short distances. This latter domain involves an elongated corridor in which the magmatic foliation is sub-horizontal and bears an orogen-parallel lineation. Finally the fourth, narrow domain displays sub-horizontal lineations on a sub-vertical magmatic foliation oblique (similar to N150 degrees E) to the trend of the belt. U/Pb dating of zircons from the various domains revealed homogeneity in age for all samples. This, together with the lack of solid-state deformation suggests that: 1) the whole batholith emplaced during a magmatic event at similar to 580 Ma, 2) the deformation occurred before complete solidification. and 3) the various fabrics are roughly contemporaneous. The complex structural pattern mapped in the studied tonalitic batholith suggests a 3D deformation of a slowly cooling, large magmatic body and its country rock. We suggest that the development of the observed 3D flow field was promoted by the low viscosity of the middle crust that turned gravitational force as an active tectonic force combining with the East-West convergence between the Sao Francisco and Congo cratons. (C) 2012 Elsevier Ltd. All rights reserved.