967 resultados para OXYGEN-REDUCTION
Resumo:
Lateksinvalmistusprosessin aikana syntyvää jätevettä käsitellään täytekappalekolonnissa siinä olevien haihtuvien orgaanisten yhdisteiden poistamiseksi. Käsittelyprosessin aikana jätevedessä oleva kiintoaine kiinnittyy täytekappaleiden pinnalle, lopulta tukkien ne. Täytekappaleiden vaihtotyö sekä likaantuneiden täytekappaleiden pesu aiheuttavat kustannuksia. Lainsäädäntö ja sopimus kunnallisen jäteveden käsittelyn kanssa vaativat, että haihtuvien yhdisteiden päästöt lasketaan tietyn tason alapuolelle. Työn ensimmäisenä tavoitteena oli tutkia lateksitehtaan jätevesivirtojen koostumusta massa- ja ainetaseiden avulla, erityisesti täytekappalekolonnia likaavan aineen osalta. Toisena tavoitteena oli löytää menetelmiä pidentää täytekappalekolonnin ajojaksoa nykyisestä. Kolmantena tavoitteena oli löytää tai kehittää esikäsittelymenetelmä likaavan aineen poistamiseksi ennen täytekappalekolonnia. Viimeisenä tavoitteena oli optimoida prosessin ajotapa, josta saavutettaisiin säästöjä vähentyneenä energiankulutuksena. Tutkimuksen perusteella täytekappalekolonni poistaa syntyvästä jätevedestä haihtuvia orgaanisia yhdisteitä 100 prosenttia sekä kemiallista hapenkulutusta 99,5 prosenttia. Täytekappalekolonnin ajojaksoa voidaan pidentää ennakoimalla kolonnin ylä- ja alapään paine-eron perusteella sen likaantumisastetta ja täytekappaleiden vaihtotarvetta. Tutkimuksen perusteella soveltuvia jäteveden esikäsittelymenetelmiä ovat dekantointi, jossa kuuden tunnin viipymällä poistetaan kiintoainetta sekä hallittu kiintoaineen saostus, jossa kymmenen minuutin viipymällä poistetaan sekä haihtuvia orgaanisia yhdisteitä, että kiintoainetta. Energiankulutusta voidaan optimoida vähentämällä höyryn virtausta täytekappalekolonniin erotustehokkuuden siitä kärsimättä.
Resumo:
Coastal areas harbour high biodiversity, but are simultaneously affected by rapid degradations of species and habitats due to human interactions. Such alterations also affect the functioning of the ecosystem, which is primarily governed by the characteristics or traits expressed by the organisms present. Marine benthic fauna is nvolved in numerous functions such as organic matter transformation and transport, secondary production, oxygen transport as well as nutrient cycling. Approaches utilising the variety of faunal traits to assess benthic community functioning have rapidly increased and shown the need for further development of the concept. In this thesis, I applied biological trait analysis that allows for assessments of a multitude of categorical traits and thus evaluation of multiple functional aspects simultaneously. I determined the functional trait structure, diversity and variability of coastal zoobenthic communities in the Baltic Sea. The measures were related to recruitment processes, habitat heterogeneity, large-scale environmental and taxonomic gradients as well as anthropogenic impacts. The studies comprised spatial scales from metres to thousands of kilometres, and temporal scales spanning one season as well as a decade. The benthic functional structure was found to vary within and between seagrass landscape microhabitats and four different habitats within a coastal bay, in papers I and II respectively. Expressions of trait categories varied within habitats, while the density of individuals was found to drive the functional differences between habitats. The findings in paper III unveiled high trait richness of Finnish coastal benthos (25 traits and 102 cateogries) although this differed between areas high and low in salinity and human pressure. In paper IV, the natural reduction in taxonomic richness across the Baltic Sea led to an overall reduction in function. However, functional richness in terms of number of trait categories remained comparatively high at low taxon richness. Changes in number of taxa within trait categories were also subtle and some individual categories were maintained or even increased. The temporal analysis in papers I and III highlighted generalities in trait expressions and dominant trait categories in a seagrass landscape as well as a “type organism” for the northern Baltic Sea. Some initial findings were made in all four papers on the role of common and rare species and traits for benthic community functioning. The findings show that common and rare species may not always express the same trait categories in relation to each other. Rare species in general did not express unique functional properties. In order to advance the understanding of the approach, I also assessed some issues concerning the limitations of the concept. This was conducted by evaluating the link between trait category and taxonomic richness using especially univariate measures. My results also show the need to collaborate nationally and internationally on safeguarding the utility of taxonomic and trait data. The findings also highlight the importance of including functional trait information into current efforts in marine spatial planning and biomonitoring.
Resumo:
The iron and steelmaking industry is among the major contributors to the anthropogenic emissions of carbon dioxide in the world. The rising levels of CO2 in the atmosphere and the global concern about the greenhouse effect and climate change have brought about considerable investigations on how to reduce the energy intensity and CO2 emissions of this industrial sector. In this thesis the problem is tackled by mathematical modeling and optimization using three different approaches. The possibility to use biomass in the integrated steel plant, particularly as an auxiliary reductant in the blast furnace, is investigated. By pre-processing the biomass its heating value and carbon content can be increased at the same time as the oxygen content is decreased. As the compression strength of the preprocessed biomass is lower than that of coke, it is not suitable for replacing a major part of the coke in the blast furnace burden. Therefore the biomass is assumed to be injected at the tuyere level of the blast furnace. Carbon capture and storage is, nowadays, mostly associated with power plants but it can also be used to reduce the CO2 emissions of an integrated steel plant. In the case of a blast furnace, the effect of CCS can be further increased by recycling the carbon dioxide stripped top gas back into the process. However, this affects the economy of the integrated steel plant, as the amount of top gases available, e.g., for power and heat production is decreased. High quality raw materials are a prerequisite for smooth blast furnace operation. High quality coal is especially needed to produce coke with sufficient properties to ensure proper gas permeability and smooth burden descent. Lower quality coals as well as natural gas, which some countries have in great volumes, can be utilized with various direct and smelting reduction processes. The DRI produced with a direct reduction process can be utilized as a feed material for blast furnace, basic oxygen furnace or electric arc furnace. The liquid hot metal from a smelting reduction process can in turn be used in basic oxygen furnace or electric arc furnace. The unit sizes and investment costs of an alternative ironmaking process are also lower than those of a blast furnace. In this study, the economy of an integrated steel plant is investigated by simulation and optimization. The studied system consists of linearly described unit processes from coke plant to steel making units, with a more detailed thermodynamical model of the blast furnace. The results from the blast furnace operation with biomass injection revealed the importance of proper pre-processing of the raw biomass as the composition of the biomass as well as the heating value and the yield are all affected by the pyrolysis temperature. As for recycling of CO2 stripped blast furnace top gas, substantial reductions in the emission rates are achieved if the stripped CO2 can be stored. However, the optimal recycling degree together with other operation conditions is heavily dependent on the cost structure of CO2 emissions and stripping/storage. The economical feasibility related to the use of DRI in the blast furnace depends on the price ratio between the DRI pellets and the BF pellets. The high amount of energy needed in the rotary hearth furnace to reduce the iron ore leads to increased CO2 emissions.
Resumo:
The volatile oils extracted from the roots of Polygala extraaxillaris were analyzed to assess whether they increase oxidative stress in Brachiaria decumbens var. Piatã, as well as to assess their effect on cellular division and cytotoxicity in laboratory. Six concentrations were used (0%, 0.35%, 0.65%, 1.25%, 0.65%, and 5.0%) with four repetitions of 25 seeds. The substance 1-(2-hydroxyphenyl) - ethanone was identified as the major constituent of the volatile oils. The results showed that the highest concentrations of the oils resulted in an increase in the oxidative stress in B. decumbens, as well as alteration in germination and growth, with a consequent reduction in the process of cellular division, causing changes in the growth standard and antioxidant defense.
Resumo:
Roguing is a practice used to reduce the seed source of red rice escapes to control in Clearfield-rice areas. However, there is great difficulty in performing it in large and heavily infested rice fields. This objective of this work was to evaluate the effects of the use of imazamox herbicide, applied in different rates and times, on plants of Clearfield-rice and red rice. Four experiments were conducted during the 2007/08 and 2008/09 growing seasons, in completely randomized block design and treatments arranged in factorial design, using three replications per treatment. The treatments had increasing rates of imazamox, application times and rice cultivars. The rice cultivars tested were IRGA 417, IRGA 422 CL, Avaxi CL and Puitá INTA CL. The variables evaluated were the number of panicles m-2, number of grains panicle-1, spikelet sterility in rice and red rice; and, rice grain yield and its components. The imazamox reduced the seed production of red rice escapes in a simulated situation of commercial Clearfield-rice area. The greater percentage reductions were obtained when this herbicide was applied at final formation of the panicle or panicle exertion of the red rice plant escapes to control. The Puitá INTA CL cultivar has high level of resistance to imazamox, independent of rate and application times tested, becoming the only alternative to the use of this practice.
Resumo:
Today’s electrical machine technology allows increasing the wind turbine output power by an order of magnitude from the technology that existed only ten years ago. However, it is sometimes argued that high-power direct-drive wind turbine generators will prove to be of limited practical importance because of their relatively large size and weight. The limited space for the generator in a wind turbine application together with the growing use of wind energy pose a challenge for the design engineers who are trying to increase torque without making the generator larger. When it comes to high torque density, the limiting factor in every electrical machine is heat, and if the electrical machine parts exceed their maximum allowable continuous operating temperature, even for a short time, they can suffer permanent damage. Therefore, highly efficient thermal design or cooling methods is needed. One of the promising solutions to enhance heat transfer performances of high-power, low-speed electrical machines is the direct cooling of the windings. This doctoral dissertation proposes a rotor-surface-magnet synchronous generator with a fractional slot nonoverlapping stator winding made of hollow conductors, through which liquid coolant can be passed directly during the application of current in order to increase the convective heat transfer capabilities and reduce the generator mass. This doctoral dissertation focuses on the electromagnetic design of a liquid-cooled direct-drive permanent-magnet synchronous generator (LC DD-PMSG) for a directdrive wind turbine application. The analytical calculation of the magnetic field distribution is carried out with the ambition of fast and accurate predicting of the main dimensions of the machine and especially the thickness of the permanent magnets; the generator electromagnetic parameters as well as the design optimization. The focus is on the generator design with a fractional slot non-overlapping winding placed into open stator slots. This is an a priori selection to guarantee easy manufacturing of the LC winding. A thermal analysis of the LC DD-PMSG based on a lumped parameter thermal model takes place with the ambition of evaluating the generator thermal performance. The thermal model was adapted to take into account the uneven copper loss distribution resulting from the skin effect as well as the effect of temperature on the copper winding resistance and the thermophysical properties of the coolant. The developed lumpedparameter thermal model and the analytical calculation of the magnetic field distribution can both be integrated with the presented algorithm to optimize an LC DD-PMSG design. Based on an instrumented small prototype with liquid-cooled tooth-coils, the following targets have been achieved: experimental determination of the performance of the direct liquid cooling of the stator winding and validating the temperatures predicted by an analytical thermal model; proving the feasibility of manufacturing the liquid-cooled tooth-coil winding; moreover, demonstration of the objectives of the project to potential customers.
Resumo:
Temporal dynamics of the chaetophoracean green algae Chaetophora elegans (Roth) C.A. Agardh and Stigeoclonium amoenum Kützing populations was investigated biweekly during late autumn trhough early spring (April to October) in two tropical streams from northwestern São Paulo State, southeastern Brazil. Abundances of one population of each species was evaluated by the quadrat technique in terms of percent cover and frequency. The fluctuations were related to the following stream variables: temperature, turbidity, specific conductance, pH, oxygen saturation, depth, substratum type, current velocity, irradiance and nutrients. Percent cover and frequency of C. elegans had lower values throughout the study period and was positively correlated to rainfall. Other correlations (i.e. positive of percent cover with depth and current velocity and negative with irradiance) were consistently found, reinforcing the strong influence of rainfall. On the other hand, percent cover and frequency of S. amoenum had higher values, with maximum growth from June to September. Percent cover was negatively correlated to rainfall. Results suggest the precipitation regime as the most important driving force to temporal changes in both populations, but playing different roles in each one. The gelatinous thallus of C. elegans seem to be favored by the increment of current velocity, since higher flows can improve the nutrient uptake by means of reduction in diffusion shell without promoting excessive drag force. In contrast, tufts of S. amoenum are, presumably, more exposed to drag force, and, consequently, more susceptible to mechanical damage effects due to higher current velocities.