969 resultados para Not in our genes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously showed in a 3D rat brain cell in vitro model for glutaric aciduria type-I that repeated application of 1mM 3-hydroxy-glutarate (3-OHGA) caused ammonium accumulation, morphologic alterations and induction of non-apoptotic cell death in developing brain cells. Here, we performed a dose-response study with lower concentrations of 3- OHGA.We exposed our cultures to 0.1, 0.33 and 1mM 3-OHGA every 12h over three days at two developmental stages (DIV5-8 and DIV11-14). Ammonium accumulation was observed at both stages starting from 0.1mM 3-OHGA, in parallel with a glutamine decrease. Morphological changes started at 0.33mM with loss of MBP expression and loss of astrocytic processes. Neurons were not substantially affected. At DIV8, release of LDH in the medium and cellular TUNEL staining increased from 0.1mM and 0.33mM 3-OHGA exposure, respectively. No increase in activated caspase-3 was observed. We confirmed ammonium accumulation and non-apoptotic cell death of brain cells in our in vitro model at lower 3-OHGA concentrations thus strongly suggesting that the observed effects are likely to take place in the brain of affected patients. The concomitant glutamine decrease suggests a defect in the astrocyte ammonium buffering system. Ammonium accumulation might be the cause of non-apoptotic cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) are the most common causes of idiopathic nephrotic syndrome (INS). We have evaluated the reliability of urinary neutrophil-gelatinase-associated lipocalin (uNGAL), urinary alpha1-microglobulin (uα1M) and urinary N-acetyl-beta-D-glucosaminidase (uβNAG) as markers for differentiating MCD from FSGS. We have also evaluated whether these proteins are associated to INS relapses or to glomerular filtration rate (GFR). METHODS: The patient cohort comprised 35 children with MCD and nine with FSGS; 19 healthy age-matched children were included in the study as controls. Of the 35 patients, 28 were in remission (21 MCD, 7 FSGS) and 16 were in relapse (14 MCD, 2 FSGS). The prognostic accuracies of these proteins were assessed by receiver operating characteristic (ROC) curve analyses. RESULTS: The level of uNGAL, indexed or not to urinary creatinine (uCreat), was significantly different between children with INS and healthy children (p = 0.02), between healthy children and those with FSGS (p = 0.007) and between children with MCD and those with FSGS (p = 0.01). It was not significantly correlated to proteinuria or GFR levels. The ROC curve analysis showed that a cut-off value of 17 ng/mg for the uNGAL/uCreat ratio could be used to distinguish MCD from FSGS with a sensitivity of 0.77 and specificity of 0.78. uβNAG was not significantly different in patients with MCD and those with FSGS (p = 0.86). Only uα1M, indexed or not to uCreat, was significantly (p < 0.001) higher for patients in relapse compared to those in remission. CONCLUSIONS: Our results indicate that in our patient cohort uNGAL was a reliable biomarker for differentiating MCD from FSGS independently of proteinuria or GFR levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities?Methodology/Principal Findings: We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region) to quantify four diversity components: (i) total number of species occurring in a region (total gamma-diversity), (ii) number of species that could occur in a target plot after environmental filtering (habitat-specific gamma-diversity), (iii) pair-wise species compositional turnover between plots (plot-to-plot beta-diversity) and (iv) number of species present per plot (plot gamma-diversity). We found strong region effects on total gamma-diversity, habitat-specific gamma-diversity and plot-to-plot beta-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot alpha-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots.Conclusions/Significance: We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale) diversity components of the flora in the Alps and the Scandes mountain ranges,but that these differences do not necessarily penetrate to the finest-grained (plot-scale) diversity component, at least not on acidic soils. Because different processes can lead to a similar pattern, we discuss the consistency of our results with Quaternary history and other divergent features between the two regions such as habitat connectivity, selection for vagility and environmental differences not accounted for in our analyses

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé La iododeoxyuridine (IdUrd), une fois marqué au 123I ou au 125I, est un agent potentiel pour des thérapies par rayonnements Auger. Cependant, des limitations restreignent son incorporation dans l'ADN. Afin d'augmenter celle-ci, différents groupes ont étudié la fluorodeoxyuridine (FdUrd), qui favorise l'incorporation d'analogue de la thymidine, sans toutefois parvenir à une toxicité associé plus importante. Dans notre approche, 3 lignées cellulaires de glioblastomes humains et une lignée de cancer ovarien ont été utilisées. Nous avons observé, 16 à 24 h après un court pré-traitement à la FdUrd, un fort pourcentage de cellules s'accumulant en phase S. Plus qu'une accumulation, c'était une synchronisation des cellules, celles-ci restant capables d'incorporer la radio-IdIrd et repartant dans le cycle cellulaire. De plus, ces cellules accumulées après un pré-traitement à la FdUrd étaient plus radio-sensibles. Après le même intervalle de 16 à 24 h suivant la FdUrd, les 4 lignées cellulaires ont incorporé des taux plus élevés de radio-IdUrd que sans ce prétraitement. Une corrélation temporelle entre l'accumulation des cellules en phase S et la forte incorporation de radio-IdUrd a ainsi été révélée 16 à 24 h après pré-traitement à la FdUrd. Les expériences de traitement par rayonnements Auger sur les cellules accumulées en phase S ont montré une augmentation significative de l'efficacité thérapeutique de 125I-IdUrd comparé aux cellules non prétraitées à la FdUrd. Une première estimation a permis de déterminer que 100 désintégrations de 125I par cellules étant nécessaires afin d'atteindre l'efficacité thérapeutique. De plus, p53 semble jouer un rôle dans l'induction directe de mort cellulaire après des traitements par rayonnements Auger, comme indiqué par les mesures par FACS d'apoptose et de nécrose 24 et 48 h après le traitement. Concernant les expériences in vivo, nous avons observé une incorporation marquée de la radio-IdUrd dans l'ADN après un pré-traitement à la FdUrd dans un model de carcinomatose ovarienne péritonéale. Une augmentation encore plus importante a été observée après injection intra-tumorale dans des transplants sous-cutanés de glioblastomes sur des souris nues. Ces modèles pourraient être utilisés pour de plus amples études de diffusion de radio-IdUrd et de thérapie par rayonnement Auger. En conclusion, ce travail montre une première application réussie de la FdUrd afin d'accroître l'efficacité de la radio-IdUrd par traitements aux rayonnements Auger. La synchronisation des cellules en phase S combinée avec la forte incorporation de radio-IdUrd dans l'ADN différées après un pré-traitement à la FdUrd ont montré le gain thérapeutique attendu in vitro. De plus, des études in vivo sont tout indiquées après les observations encourageantes d'incorporation de radio-IdUrd dans les models de transplants sous-cutanés de glioblastomes et de tumeurs péritonéales ovariennes. Summary Iododeoxyuridine (IdUrd), labelled with 123I or 125I, could be a potential Auger radiation therapy agent. However, limitations restrict its DNA incorporation in proliferating cells. Therefore, fluorodeoxyuridine (FdUrd), which favours incorporation of thymidine analogues, has been studied by different groups in order to increase radio-IdUrd DNA incorporation, however therapeutic efficacy increase could not be reached. In our approach, 3 human glioblastoma cell lines with different p53 expression and one ovarian cancer line were pre-treated with various FdUrd conditions. We observed a high percentage of cells accumulating in early S phase 16 to 24 h after a short and non-toxic FdUrd pre-treatment. More than an accumulation, this was a synchronization, cells remaining able to incorporate radio-IdUrd and re-entering the cell cycle. Furthermore, the S phase accumulated cells post FdUrd pre-treatment were more radiosensitive. After the same delay of 16 to 24 h post FdUrd pre-treatment, the 4 cell lines were incorporating higher rates of radio-IdUrd compared with untreated cells. A time correlation between S phase accumulation and high radio-IdUrd incorporation was therefore revealed 16 to 24 h post FdUrd pre-treatment. Auger radiation treatment experiments performed on S phase enriched cells showed a significant increase of killing efficacy of 125I-IdUrd compared with cells not pre-treated with FdUrd. A first estimation indicates further that about 100 125I decays were required to reach killing in the targeted cells. Moreover, p53 might play a role on the direct induction of cell death pathways after Auger radiation treatments, as indicated by differential apoptosis and necrosis induction measured by FACS 24 and 48 h after treatment initiation. Concerning in vivo results, we observed a marked DNA incorporation increase of radio-IdUrd after FdUrd pre-treatment in peritoneal carcinomatosis in SCID mice. Even higher incorporation increase was observed after intra-tumoural injection of radio-IdUrd in subcutaneous glioblastoma transplants in nude mice. These tumour models might be further useful for diffusion of radio-IdUrd and Auger radiation therapy studies. In conclusion, these data show a first successful application of thymidine synthesis inhibition able to increase the efficacy of radio-IdUrd Auger radiation treatment. The S phase synchronization combined with a high percentage DNA incorporation of radio-IdUrd delayed post FdUrd pre-treatment provided the expected therapeutic gain in vitro. Further in vivo studies are indicated after the observations of encouraging radio-IdUrd uptake experiments in glioblastoma subcutaneous xenografts and in an ovarian peritoneal carcinomatosis model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Targeted delivery of anticancer chemotherapeutics such as mitoxantrone (MTX) can significantly intensify their cytotoxic effects selectively in solid tumors such as breast cancer. In the current study, folic acid (FA)-armed and MTX-conjugated magnetic nanoparticles (MNPs) were engineered for targeted eradication of folate receptor (FR)-positive cancerous cells. Polyethylene glycol (PEG), FA and MTX were covalently conjugated onto the MNPs to engineer the PEGylated FA-MTX-MNPs. The internalization studies were performed using fluorescein isothiocyanate (FITC)-labeled FA-decorated MNPs (FA-FITC-MNPs) in both FR-positive MCF-7 cells and FR-negative A549 cells by means of fluorescence microscopy and flow cytometry. The cellular and molecular impacts of FA-MTX-MNPs were examined using trypan blue cell viability and FITC-labeled annexin V apoptosis assays and 4',6-diamidino-2-phenylindole (DAPI) staining, DNA ladder and quantitative polymerase chain reaction (qPCR) assays. RESULTS: The FR-positive MCF-7 cells showed significant internalization of the FA-FITC-MNPs, but not the FR-negative A549 cells. The FR-positive cells treated with the PEGylated FA-MTX-MNPs exhibited the IC50 values of 3 μg/mL and 1.7 μg/mL, 24 h and 48 h post-treatment, respectively. DAPI staining and DNA ladder assays revealed significant condensation of nucleus and fragmentation of genomic DNA in the FR-positive MCF-7 cells treated with the PEGylated FA-MTX-MNPs as compared to the FR-negative A549 cells. The FITC-labeled annexin V assay confirmed emergence of late apoptosis (>80%) in the FR-positive MCF-7 cells treated with the PEGylated FA-MTX-MNPs, but not in the FR-negative A549 cells. The qPCR analysis confirmed profound cytotoxic impacts via alterations of apoptosis-related genes induced by MTX-FA-MNPs in MCF-7 cells, but not in the A549 cells. CONCLUSION: Our findings evince that the engineered PEGylated FA-MTX-MNPs can be specifically taken up by the FR-positive malignant cells and effectively demolish them through up-regulation of Bcl-2-associated X protein (Bax) and Caspase 9 and down-regulation of AKt. Hence, the engineered nanosystem is proposed for simultaneous targeted imaging and therapy of various cancers overexpressing FRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Pneumonia is the biggest cause of deaths in young children in developing countries, but early diagnosis and intervention can effectively reduce mortality. We aimed to assess the diagnostic value of clinical signs and symptoms to identify radiological pneumonia in children younger than 5 years and to review the accuracy of WHO criteria for diagnosis of clinical pneumonia. METHODS: We searched Medline (PubMed), Embase (Ovid), the Cochrane Database of Systematic Reviews, and reference lists of relevant studies, without date restrictions, to identify articles assessing clinical predictors of radiological pneumonia in children. Selection was based on: design (diagnostic accuracy studies), target disease (pneumonia), participants (children aged <5 years), setting (ambulatory or hospital care), index test (clinical features), and reference standard (chest radiography). Quality assessment was based on the 2011 Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria. For each index test, we calculated sensitivity and specificity and, when the tests were assessed in four or more studies, calculated pooled estimates with use of bivariate model and hierarchical summary receiver operation characteristics plots for meta-analysis. FINDINGS: We included 18 articles in our analysis. WHO-approved signs age-related fast breathing (six studies; pooled sensitivity 0·62, 95% CI 0·26-0·89; specificity 0·59, 0·29-0·84) and lower chest wall indrawing (four studies; 0·48, 0·16-0·82; 0·72, 0·47-0·89) showed poor diagnostic performance in the meta-analysis. Features with the highest pooled positive likelihood ratios were respiratory rate higher than 50 breaths per min (1·90, 1·45-2·48), grunting (1·78, 1·10-2·88), chest indrawing (1·76, 0·86-3·58), and nasal flaring (1·75, 1·20-2·56). Features with the lowest pooled negative likelihood ratio were cough (0·30, 0·09-0·96), history of fever (0·53, 0·41-0·69), and respiratory rate higher than 40 breaths per min (0·43, 0·23-0·83). INTERPRETATION: Not one clinical feature was sufficient to diagnose pneumonia definitively. Combination of clinical features in a decision tree might improve diagnostic performance, but the addition of new point-of-care tests for diagnosis of bacterial pneumonia would help to attain an acceptable level of accuracy. FUNDING: Swiss National Science Foundation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulmonary fat embolism (PFE) is a common complication of blunt force traumas with bone fractures. Severe forms cause impedance to right ventricular (RV) ejection, with eventual right heart ischaemia and failure. In a prospective study, we have investigated 220 consecutive autopsy cases (73 females, 147 males, mean age 52.1 years, min 14 years, max 91 years). PFE was detected in 52 cases that were divided into three groups according to the degree of PFE (1-3). A fourth group of cases of violent death without PFE was used for comparison. In each case, histology (H&E, Masson) and immunohistochemistry (fibronectin and C5b-9) were performed on six cardiac samples (anterior, lateral and posterior wall of both ventricles). The degree of cardiac damage was registered in each sample and the mean degree of damage was calculated in each case at the RV and left ventricle (LV). Moreover, a parameter ∆ that is the difference between the mean damage at the RV and the LV was calculated in each case. The results were compared within each group and between the groups. In the present study, we could not detect prevalent RV damage in cases of high degree PFE as we did in our previous investigation. In the group PFE3 the difference of the degree of damage between the RV and LV was higher than the one observed in the groups PFE0-2 with the antibody anti-fibronectin. Prevalent right ventricular stress in cases of severe PFE may explain this observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with cleft palate are prone to velopharyngeal insufficiency. In minor cases or when hypernasal speech does not resolve after velopharyngoplasty, an augmentation pharyngoplasty with autologous fat can be proposed. The aim of the present study is to evaluate the short-term (within 2 months) and long-term efficiency (during the 24 months following the procedure) of our procedure in the setting of velopharyngeal insufficiency related to a cleft palate. Twenty-two patients with cleft palate related velopharyngeal insufficiency were included in this retrospective study. All patients were operated following the same technique, in the same institution. The pre- and postoperative evaluations included a nasometry, a subjective evaluation using the Borel-Maisonny score, and a nasofibroscopy to assess the degree of velopharyngeal closure. Scores of Borel-Maisonny and nasometry were compared before, shortly after the procedure (within 2 months) and long term after the procedure (within 24 months). Forty-one procedures in 22 patients with a cleft palate performed in our institution between October 2004 and January 2012 were included in the study. Nine patients had a previous velopharyngoplasty with persistent rhinolalia despite intensive speech therapy. In 14 patients the procedure was repeated because of recurrent hypernasal speech after the first injection. The average number of procedures per patient was 1.8. Postoperative nasometry and Borel-Maisonny scores were statistically significantly improved and remained stable until the end of the follow-up (median 42 months postoperative) in most patients. Complications were rare and minor. Autologous fat injection is a simple procedure for treatment of minor velopharyngeal insufficiencies in patients with cleft palate, with good long-term results and few complications.