971 resultados para Nonlinear problems
Resumo:
In order to study the failure of disordered materials, the ensemble evolution of a nonlinear chain model was examined by using a stochastic slice sampling method. The following results were obtained. (1) Sample-specific behavior, i.e. evolutions are different from sample to sample in some cases under the same macroscopic conditions, is observed for various load-sharing rules except in the globally mean field theory. The evolution according to the cluster load-sharing rule, which reflects the interaction between broken clusters, cannot be predicted by a simple criterion from the initial damage pattern and even then is most complicated. (2) A binary failure probability, its transitional region, where globally stable (GS) modes and evolution-induced catastrophic (EIC) modes coexist, and the corresponding scaling laws are fundamental to the failure. There is a sensitive zone in the vicinity of the boundary between the GS and EIC regions in phase space, where a slight stochastic increment in damage can trigger a radical transition from GS to EIC. (3) The distribution of strength is obtained from the binary failure probability. This, like sample-specificity, originates from a trans-scale sensitivity linking meso-scopic and macroscopic phenomena. (4) Strong fluctuations in stress distribution different from that of GS modes may be assumed as a precursor of evolution-induced catastrophe (EIC).
Resumo:
In the present paper, it is shown that the zero series eigenfunctions of Reissner plate cracks/notches fracture problems are analogous to the eigenfunctions of anti-plane and in-plane. The singularity in the double series expression of plate problems only arises in zero series parts. In view of the relationship with eigen-values of anti-plane and in-plane problem, the solution of eigen-values for Reissner plates consists of two parts: anti-plane problem and in-plane problem. As a result the corresponding eigen-values or the corresponding eigen-value solving programs with respect to the anti-plane and in-plane problems can be employed and many aggressive SIF computed methods of plane problems can be employed in the plate. Based on those, the approximate relationship of SIFs between the plate and the plane fracture problems is figured out, and the effect relationship of the plate thickness on SIF is given.
Resumo:
Both earthquake prediction and failure prediction of disordered brittle media are difficult and complicated problems and they might have something in common. In order to search for clues for earthquake prediction, the common features of failure in a simple nonlinear dynamical model resembling disordered brittle media are examined. It is found that the failure manifests evolution-induced catastrophe (EIC), i.e., the abrupt transition from globally stable (GS) accumulation of damage to catastrophic failure. A distinct feature is the significant uncertainty of catastrophe, called sample-specificity. Consequently, it is impossible to make a deterministic prediction macroscopically. This is similar to the question of predictability of earthquakes. However, our model shows that strong stress fluctuations may be an immediate precursor of catastrophic failure statistically. This might provide clues for earthquake forecasting.
Resumo:
Determining the mechanical properties at micro- and nanometer length scales using nanoindentation or atomic force microscopy is important to many areas of science and engineering. Here we establish equations for obtaining storage and loss modulus from oscillatory indentations by performing a nonlinear analysis of conical and spherical indentation in elastic and viscoelastic solids. We show that, when the conical indenter is driven by a sinusoidal force, the square of displacement is a sinusoidal function of time, not the displacement itself, which is commonly assumed. Similar conclusions hold for spherical indentations. Well-known difficulties associated with measuring contact area and correcting thermal drift may be circumvented using the newly derived equations. These results may help improve methods of using oscillatory indentation for determining elastic and viscoelastic properties of solids.
Resumo:
In this paper the finite element method was used to simulate micro-scale indentation process. The several standard indenters were simulated with 3D finite element model. The emphasis of this paper was the differences between 2D axisymmetric cone model and
Resumo:
Three analytical double-parameter criteria based on a bending model and a two-dimensional finite element analysis model are presented for the modeling of ductile thin film undergoing a nonlinear peeling process. The bending model is based on different governing parameters: (1) the interfacial fracture toughness and the separation strength, (2) the interfacial fracture toughness and the crack tip slope angle, and (3) the interfacial fracture toughness and the critical Mises effective strain of the delaminated thin film at the crack tip. Thin film nonlinear peeling under steady-state condition is solved with the different governing parameters. In addition, the peeling test problem is simulated by using the elastic-plastic finite element analysis model. A critical assessment of the three analytical bending models is made by comparison of the bending model solutions with the finite element analysis model solutions. Furthermore, through analyses and comparisons for solutions based on both the bending model and the finite element analysis model, some connections between the bending model and the finite element analysis model are developed. Moreover, in the present research, the effect of different selections for cohesive zone shape on the ductile film peeling solutions is discussed.
Resumo:
In this paper, the strain gradient theory proposed by Chen and Wang (2001 a, 2002b) is used to analyze an interface crack tip field at micron scales. Numerical results show that at a distance much larger than the dislocation spacing the classical continuum plasticity is applicable; but the stress level with the strain gradient effect is significantly higher than that in classical plasticity immediately ahead of the crack tip. The singularity of stresses in the strain gradient theory is higher than that in HRR field and it slightly exceeds or equals to the square root singularity and has no relation with the material hardening exponents. Several kinds of interface crack fields are calculated and compared. The interface crack tip field between an elastic-plastic material and a rigid substrate is different from that between two elastic-plastic solids. This study provides explanations for the crack growth in materials by decohesion at the atomic scale.
Resumo:
The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.