963 resultados para Non-commutative particles dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of the unique geometry for nitric oxide (NO) adsorption on Pd(111) and Pt(111) surfaces as well as the effect of temperature were studied by density functional theory calculations and ab initio molecular dynamics at finite temperature. We found that at low coverage, the adsorption geometry is determined by electronic interactions, depending sensitively on the adsorption sites and coverages, and the effect of temperature on geometries is significant. At coverage of 0.25 monolayer (ML), adsorbed NO at hollow sites prefer an upright configuration, while NO adsorbed at top sites prefer a tilting configuration. With increase in the coverage up to 0.50 ML, the enhanced steric repulsion lead to the tilting of hollow NO. We found that the tilting was enhanced by the thermal effects. At coverage of 0.75 ML with p(2 x 2)-3NO(fcc+hcp+top) structure, we found that there was no preferential orientation for tilted top NO. The interplay of the orbital hybridization, thermal effects, steric repulsion, and their effects on the adsorption geometries were highlighted at the end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is two-fold: firstly, we develop a local and global (in time) well-posedness theory for a system describing the motion of two fluids with different densities under capillary-gravity waves in a deep water flow (namely, a Schrodinger-Benjamin-Ono system) for low-regularity initial data in both periodic and continuous cases; secondly, a family of new periodic traveling waves for the Schrodinger-Benjamin-Ono system is given: by fixing a minimal period we obtain, via the implicit function theorem, a smooth branch of periodic solutions bifurcating a Jacobian elliptic function called dnoidal, and, moreover, we prove that all these periodic traveling waves are nonlinearly stable by perturbations with the same wavelength.