990 resultados para Neural injury


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article discusses the identification of nonlinear dynamic systems using multi-layer perceptrons (MLPs). It focuses on both structure uncertainty and parameter uncertainty, which have been widely explored in the literature of nonlinear system identification. The main contribution is that an integrated analytic framework is proposed for automated neural network structure selection, parameter identification and hysteresis network switching with guaranteed neural identification performance. First, an automated network structure selection procedure is proposed within a fixed time interval for a given network construction criterion. Then, the network parameter updating algorithm is proposed with guaranteed bounded identification error. To cope with structure uncertainty, a hysteresis strategy is proposed to enable neural identifier switching with guaranteed network performance along the switching process. Both theoretic analysis and a simulation example show the efficacy of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Multiple studies have identified single variables or composite scores that help risk stratify patients at the time of acute lung injury (ALI) diagnosis. However, few studies have addressed the important question of how changes in pulmonary physiologic variables might predict mortality in patients during the subacute or chronic phases of ALI. We studied pulmonary physiologic variables, including respiratory system compliance, P/F ratio and oxygenation index, in a cohort of patients with ALI who survived more than 6 days of mechanical ventilation to see if changes in these variables were predictive of death and whether they are informative about the pathophysiology of subacute ALI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we intoduce a novel stochastic Hebb-like learning rule for neural networks that is neurobiologically motivated. This learning rule combines features of unsupervised (Hebbian) and supervised (reinforcement) learning and is stochastic with respect to the selection of the time points when a synapse is modified. Moreover, the learning rule does not only affect the synapse between pre- and postsynaptic neuron, which is called homosynaptic plasticity, but effects also further remote synapses of the pre-and postsynaptic neuron. This more complex form of synaptic plasticity has recently come under investigations in neurobiology and is called heterosynaptic plasticity. We demonstrate that this learning rule is useful in training neural networks by learning parity functions including the exclusive-or (XOR) mapping in a multilayer feed-forward network. We find, that our stochastic learning rule works well, even in the presence of noise. Importantly, the mean leaxning time increases with the number of patterns to be learned polynomially, indicating efficient learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The hidden nature of brain injury means that it is often difficult for people to understand the sometimes challenging behaviors that individuals exhibit. The misattribution of these behaviors may lead to a lack of consideration and public censure if the individual is seen as simply misbehaving.

Objective: The aim of this study was to explore the impact of visual cues indicating the presence or absence of brain injury on prejudice, desire for social interaction, and causal attributions of nursing and computing science students.

Method: An independent-groups design was employed in this research, which recruited 190 first-year nursing students and 194 first-year computing science students from a major university in Belfast, UK. A short passage describing an adolescent’s behavior after a brain injury, together with one of three images portraying a young adolescent with a scar, a head dressing, or neither of these, was given to participants. They were then asked to answer questions relating to prejudice, social interaction, locus of control, and causal attributions. The attributional statements suggested that the character’s behavior could be the result of brain injury or adolescence.

Results: Analysis of variance demonstrated a statistically significant difference between the student groups, where nursing students (M = 45.17, SD = 4.69) desired more social interaction with the fictional adolescent than their computer science peers (M = 38.64, SD = 7.69). Further, analysis of variance showed a main effect of image on the attributional statement that described adolescence as a suitable explanation for the character’s lack of self-confidence.

Discussion: Attributions of brain injury were influenced by the presence of a visible but potentially specious indicator of injury. This suggests that survivors of brain injury who do not display any outward indicator may receive less care and face expectations to behave in a manner consistent with the norms of society. If their injury does not allow them to meet with these expectations, they may face public censure and discrimination.