971 resultados para Nano-meter scale
Resumo:
The microstructural variation near surface of nano elastic materials is analyzed based on different potentials. The atomic/molecular mechanism underlying the variation and its effect on elastic modulus are such that the nature of long-range interactions (attractive or repulsive) in the atomic/molecular potentials essentially governs the variation near surface (looser or tighter) and results in two opposite size effects (decreasing or increasing modulus) with decreasing size.
Resumo:
ABSTRACT Recently, people are confused with two opposite variations of elastic modulus with decreasing size of nano scale sample: elastic modulus either decreases or increases with decreas- ing sample size. In this paper, based on intermolecular potentials and a one dimensional model, we provide a unified understanding of the two opposite size effects. Firstly, we analyzed the mi- crostructural variation near the surface of an fcc nanofilm based on the Lennard-Jones potential. It is found that the atomic lattice near the surface becomes looser in comparison with the bulk, indicating that atoms in the bulk are located at the balance of repulsive forces, resulting in the decrease of the elastic moduli with the decreasing thickness of the film accordingly. In addition, the decrease in moduli should be attributed to both the looser surface layer and smaller coor- dination number of surface atoms. Furthermore, it is found that both looser and tighter lattice near the surface can appear for a general pair potential and the governing mechanism should be attributed to the surplus of the nearest force to all other long range interactions in the pair po- tential. Surprisingly, the surplus can be simply expressed by a sum of the long range interactions and the sum being positive or negative determines the looser or tighter lattice near surface re- spectively. To justify this concept, we examined ZnO in terms of Buckingham potential with long range Coulomb interactions. It is found that compared to its bulk lattice, the ZnO lattice near the surface becomes tighter, indicating the atoms in the bulk located at the balance of attractive forces, owing to the long range Coulomb interaction. Correspondingly, the elastic modulus of one- dimensional ZnO chain increases with decreasing size. Finally, a kind of many-body potential for Cu was examined. In this case, the surface layer becomes tighter than the bulk and the modulus increases with deceasing size, owing to the long range repulsive pair interaction, as well as the cohesive many-body interaction caused by the electron redistribution.
Resumo:
A scale-similarity model for Lagrangian two-point, two-time velocity correlations LVCs in isotropic turbulence is developed from the Kolmogorov similarity hypothesis. It is a second approximation to the isocontours of LVCs, while the Smith-Hay model is only a first approximation. This model expresses the LVC by its space correlation and a dispersion velocity. We derive the analytical expression for the dispersion velocity from the Navier-Stokes equations using the quasinormality assumption. The dispersion velocity is dependent on enstrophy spectra and shown to be smaller than the sweeping velocity for the Eulerian velocity correlation. Therefore, the Lagrangian decorrelation process is slower than the Eulerian decorrelation process. The data from direct numerical simulation of isotropic turbulence support the scale-similarity model: the LVCs for different space separations collapse into a universal form when plotted against the separation axis defined by the model.
Resumo:
In the hybrid approach of large-eddy simulation (LES) and Lighthill’s acoustic analogy for turbulence-generated sound, the turbulence source fields are obtained using an LES and the turbulence-generated sound at far fields is calculated from Lighthill’s acoustic analogy. As only the velocity fields at resolved scales are available from the LES, the Lighthill stress tensor, serving as a source term in Lighthill’s acoustic equation, has to be evaluated from the resolved velocity fields. As a result, the contribution from the unresolved velocity fields is missing in the conventional LES. The sound of missing scales is shown to be important and hence needs to be modeled. The present study proposes a kinematic subgrid-scale (SGS) model which recasts the unresolved velocity fields into Lighthill’s stress tensors. A kinematic simulation is used to construct the unresolved velocity fields with the imposed temporal statistics, which is consistent with the random sweeping hypothesis. The kinematic SGS model is used to calculate sound power spectra from isotropic turbulence and yields an improved result: the missing portion of the sound power spectra is approximately recovered in the LES.
Resumo:
The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations (LTCs). Most of the currently existing SGS models are constructed based on the energy budget equations. Therefore, they are able to correctly predict energy spectra, but they may not ensure the correct prediction on the LTCs. Previous researches investigated the effect of the SGS modeling on the Eulerian time correlations. This paper is devoted to study the LTCs in LES. A direct numerical simulation (DNS) and the LES with a spectral eddy viscosity model are performed for isotropic turbulence and the LTCs are calculated using the passive vector method. Both a priori and a posteriori tests are carried out. It is observed that the subgrid-scale contributions to the LTCs cannot be simply ignored and the LES overpredicts the LTCs than the DNS. It is concluded from the straining hypothesis that an accurate prediction of enstrophy spectra is most critical to the prediction of the LTCs.
Resumo:
This paper aims at investigating the size-dependent self-buckling and bending behaviors of nano plates through incorporating surface elasticity into the elasticity with residual stress fields. In the absence of external loading, positive surface tension induces a compressive residual stress field in the bulk of the nano plate and there may be self-equilibrium states corresponding to the plate self-buckling. The self-instability of nano plates is investigated and the critical self-instability size of simply supported rectangular nano plates is determined. In addition, the residual stress field in the bulk of the nano plate is usually neglected in the existing literatures, where the elastic response of the bulk is often described by the classical Hooke’s law. The present paper considered the effect of the residual stress in the bulk induced by surface tension and adopted the elasticity with residual stress fields to study the bending behaviors of nano plates without buckling. The present results show that the surface effects only modify the coefficients in corresponding equations of the classical Kirchhoff plate theory.
Resumo:
In the absence of external loading, surface tension will induce a residual stress field in the bulk of nano structures. However, in the prediction of mechanical properties of nano structures, the elastic response of the bulk is usually described by classical Hooke’s law, in which the aforementioned residual stress was neglected in the existing literatures. The present paper investigates the influences of surface tension and the residual stress in the bulk induced by the surface tension on the elastic properties of nano structures. We firstly present the surface elasticity in the Lagrangian and the Eulerian descriptions and point out that even in the case of infinitesimal deformations the reference and the current configurations should be discriminated; otherwise the out-plane terms of surface displacement gradient, associated with the surface tension, may sometimes be overlooked in the Eulerian descriptions, particularly for curved and rotated surfaces. Then, the residual stress in the bulk is studied through the non-classical boundary conditions and used to construct the linear elastic constitutive relations for the bulk material. Finally, these relations are adopted to analyze the size-dependent properties of pure bending of Al nanowires. The present results show that surface tension will considerably affect the effective Young’s modulus of Al nanowires, which decrease with either the decrease of nanowires thickness or the increase of the aspect ratio.
Resumo:
Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.
Resumo:
This publication is a record of the proceedings of the Siem Reap Workshop and Symposium. It provides a bottom-up perspective on how rights are understood, and what rights are seen as important by small-scale fishing communities, if they are to fulfil their responsibilities for managing resources in a sustainable and equitable manner. It is hoped that these proceedings, and the Statement from the Workshop-the Siem Reap Statement-are found useful by those engaged in policy making and advocacy in support of small-scale fisheries, as well as researchers, non-governmental organizations (NGOs), fishworker organizations, and multilateral and regional organizations
Resumo:
The Zanzibar Workshop Proceedings consists of the report and the Statement of the Workshop and provides a rich understanding of the dynamics of traditional, indigenous, small-scale and artisanal fisheries and fishing communities in the Eastern and Southern African (ESA) context. The issues covered include: the saga of rights denied to coastal lands, fishing, and threats to livelihood arising from lack of recognition of traditional rights and the livelihood needs of people in the region; the aspirations of coastal and inland communities to maintain or improve their livelihoods; and a bottom-up perspective on access rights to fishing, post-harvest rights and economic and social rights. This report will be a valuable source of information for community organizers, trade union leaders, government officials and the donor community, including multilateral organizations, researchers and for all those who are interested in the well-being of ESA fishing communities.
Resumo:
Size effects of mechanical behaviors of materials are referred to the variation of the mechanical behavior due to the sample sizes changing from macroscale to micro-/nanoscales. At the micro-/nanoscale, since sample has a relatively high specific surface area (SSA) (ratio of surface area to volume), the surface although it is often neglected at the macroscale, becomes prominent in governing the energy effect, although it is often neglected at the macroscale, becomes prominent in governing the mechanical behavior. In the present research, a continuum model considering the surface energy effect is developed through introducing the surface energy to total potential energy. Simultaneously, a corresponding finite element method is developed. The model is used to analyze the axial equilibrium strain problem for a Cu nanowire at the external loading-free state. As another application of the model, from dimensional analysis, the size effects of uniform compression tests on the microscale cylinder specimens for Ni and Au single crystals are analyzed and compared with experiments in literatures. (C) 2009 Elsevier B.V. All rights reserved.