997 resultados para NUCLEAR REACTION
Resumo:
PURPOSE: To evaluate the potential delay of the retinal degeneration in rd1/rd1 mice using recombinant human glial cell line-derived neurotrophic factor (rhGDNF) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) microspheres. METHODS: rhGDNF-loaded PLGA microspheres were prepared using a water in oil in water (w/o/w) emulsion solvent extraction-evaporation process. In vitro, the rhGDNF release profile was assessed using radiolabeled factor. In vivo, rhGDNF microspheres, blank microspheres, or microspheres loaded with inactivated rhGDNF were injected into the vitreous of rd1/rd1 mice at postnatal day 11 (PN11). The extent of retinal degeneration was examined at PN28 using rhodopsin immunohistochemistry on whole flat-mount retinas, outer nuclear layer (ONL) cell counting on histology sections, and electroretinogram tracings. Immunohistochemical reactions for glial fibrillary acidic protein (GFAP), F4/80, and rhodopsin were performed on cryosections. RESULTS: Significant delay of rod photoreceptors degeneration was observed in mice receiving the rhGDNF-loaded microspheres compared to either untreated mice or to mice receiving blank or inactivated rhGDNF microspheres. The degeneration delay in the eyes receiving the rhGDNF microspheres was illustrated by the increased rhodopsin positive signals, the preservation of significantly higher number of cell nuclei within the ONL, and significant b-wave increase. A reduction of the subretinal glial proliferation was also observed in these treated eyes. No significant intraocular inflammatory reaction was observed after the intravitreous injection of the various microspheres. CONCLUSIONS: A single intravitreous injection of rhGDNF-loaded microspheres slows the retinal degeneration processes in rd1/rd1 mice. The use of injectable, biodegradable polymeric systems in the vitreous enables the efficient delivery of therapeutic proteins for the treatment of retinal diseases.
Resumo:
Primary objectives: Awake surgeries of slow-growing tumours invading the brain and guided by direct electrical stimulation induce major brain reorganizations accompanied with slight impairments post-operatively. In most cases, these deficits are so slight after a few days that they are often not detectable on classical neuropsychological evaluations. Consequently, this study investigated whether simple visuo-manual reaction time paradigms would sign some level of functional asymmetries between both hemispheres. Importantly, the visual stimulus was located in the saggital plane in order to limit attentional biases and to focus mainly on the inter-hemispheric asymmetry. Methods and procedures: Three patients (aged 41, 59 and 59 years) after resections in parietal regions and a control group (age¼44, SD¼6.9) were compared during simple uni- and bimanual reaction times (RTs). Main outcomes and results: Longer RTs were observed for the contralesional compared to the ipsilesional hand in the unimanual condition. This asymmetry was reversed for the bimanual condition despite longer RTs. Conclusion and clinical implications: Reaction time paradigms are useful in these patients to monitor more precisely their functional deficits, especially their level of functional asymmetry, and to understand brain (re)organization following slowgrowing lesions.
Resumo:
A total of 49 wastewater samples from 23 different wastewater treatment plants (WWTPs) were analyzed using real-time quantitative polymerase chain reaction for the presence and quantity of thermotolerant campylobacters. Thermotolerant campylobacters were detected in 87.5% (21/24) and 64% (16/25) of untreated and treated wastewater samples, respectively. Their concentration was sufficiently high to be quantified in 20.4% (10/49) of the samples. In these samples, the concentration ranged from 68 000 to 2292 000 cells/L in untreated wastewater and from 10 800 to 28 000 cells/L in treated water. We conclude that thermotolerant campylobacters present a health hazard for workers at WWTPs in Switzerland. [Authors]
Resumo:
Based on results of an evaluation performed during the winter of 1985-86, six Troxler 3241-B Asphalt Content Gauges were purchased for District use in monitoring project asphalt contents. Use of these gauges will help reduce the need for chemical based extractions. Effective use of the gauges depends on the accurate preparation and transfer of project mix calibrations from the Central Lab to the Districts. The objective of this project was to evaluate the precision and accuracy of a gauge in determining asphalt contents and to develop a mix calibration transfer procedure for implementation during the 1987 construction. The first part of the study was accomplished by preparing mix calibrations in the Central Lab gauge and taking multiple measurements of a sample with known asphalt content. The second part was accomplished by preparing transfer pans, obtaining count data on the pans using each gauge, and transferring calibrations from one gauge to another through the use of calibration transfer equations. The transferred calibrations were tested by measuring samples with a known asphalt content. The study established that the Troxler 3241-B Asphalt Content Gauge yields results of acceptable accuracy and precision as evidenced by a standard deviation of 0.04% asphalt content on multiple measurements of the same sample. The calibration transfer procedure proved feasible and resulted in the calibration transfer portion of Materials I.M. 335 - Method of Test For Determining the Asphalt Content of Bituminous Mixtures by the Nuclear Method.
Resumo:
Background There is no evidence to date on whether transcriptional regulators are able to shift the balance between mitochondrial fusion and fission events through selective control of gene expression. Methodology/Principal Findings Here, we demonstrate that reduced mitochondrial size observed in knock-out mice for the transcriptional regulator PGC-1β is associated with a selective reduction in Mitofusin 2 (Mfn2) expression, a mitochondrial fusion protein. This decrease in Mfn2 is specific since expression of the remaining components of mitochondrial fusion and fission machinery were not affected. Furthermore, PGC-1β increases mitochondrial fusion and elongates mitochondrial tubules. This PGC-1β-induced elongation specifically requires Mfn2 as this process is absent in Mfn2-ablated cells. Finally, we show that PGC-1β increases Mfn2 promoter activity and transcription by coactivating the nuclear receptor Estrogen Related Receptor α (ERRα). Conclusions/Significance Taken together, our data reveal a novel mechanism by which mammalian cells control mitochondrial fusion. In addition, we describe a novel role of PGC-1β in mitochondrial physiology, namely the control of mitochondrial fusion mainly through Mfn2.
Resumo:
The fasting-induced adipose factor (FIAF, ANGPTL4, PGAR, HFARP) was previously identified as a novel adipocytokine that was up-regulated by fasting, by peroxisome proliferator-activated receptor agonists, and by hypoxia. To further characterize FIAF, we studied regulation of FIAF mRNA and protein in liver and adipose cell lines as well as in human and mouse plasma. Expression of FIAF mRNA was up-regulated by peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARbeta/delta agonists in rat and human hepatoma cell lines and by PPARgamma and PPARbeta/delta agonists in mouse and human adipocytes. Transactivation, chromatin immunoprecipitation, and gel shift experiments identified a functional PPAR response element within intron 3 of the FIAF gene. At the protein level, in human and mouse blood plasma, FIAF was found to be present both as the native protein and in a truncated form. Differentiation of mouse 3T3-L1 adipocytes was associated with the production of truncated FIAF, whereas in human white adipose tissue and SGBS adipocytes, only native FIAF could be detected. Interestingly, truncated FIAF was produced by human liver. Treatment with fenofibrate, a potent PPARalpha agonist, markedly increased plasma levels of truncated FIAF, but not native FIAF, in humans. Levels of both truncated and native FIAF showed marked interindividual variation but were not associated with body mass index and were not influenced by prolonged semistarvation. Together, these data suggest that FIAF, similar to other adipocytokines such as adiponectin, may partially exert its function via a truncated form.
Resumo:
The action of the thyroid hormones on responsive cells in the peripheral nervous system requires the presence of nuclear triiodothyronine receptors (NT3R). These nuclear receptors, including both the alpha and beta subtypes of NT3R, were visualized by immunocytochemistry with the specific 2B3 monoclonal antibody. In the dorsal root ganglia (DRG) of rat embryos, NT3R immunoreactivity was first discretely revealed in a few neurons at embryonic day 14 (E14), then strongly expressed by all neurons at E17 and during the first postnatal week; all DRG neurons continued to possess clear NT3R immunostaining, which faded slightly with age. The peripheral glial cells in the DRG displayed a short-lived NT3R immunoreaction, starting at E17 and disappearing from the satellite and Schwann cells by postnatal days 3 and 7 respectively. In the developing sciatic nerve, Schwann cells also exhibited transient NT3R immunoreactivity restricted to a short period ranging from E17 to postnatal day 10; the NT3R immunostaining of the Schwann cells vanished proximodistally along the sciatic nerve, so that the Schwann cells rapidly became free of detectable NT3R immunostaining. However, after the transection or crushing of an adult sciatic nerve, the NT3R immunoreactivity reappeared in the Schwann cells adjacent to the lesion by 2 days, then along the distal segment in which the axons were degenerating, and finally disappeared by 45 days, when the regenerating axons were allowed to re-occupy the distal segment.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
When decommissioning a nuclear facility it is important to be able to estimate activity levels of potentially radioactive samples and compare with clearance values defined by regulatory authorities. This paper presents a method of calibrating a clearance box monitor based on practical experimental measurements and Monte Carlo simulations. Adjusting the simulation for experimental data obtained using a simple point source permits the computation of absolute calibration factors for more complex geometries with an accuracy of a bit more than 20%. The uncertainty of the calibration factor can be improved to about 10% when the simulation is used relatively, in direct comparison with a measurement performed in the same geometry but with another nuclide. The simulation can also be used to validate the experimental calibration procedure when the sample is supposed to be homogeneous but the calibration factor is derived from a plate phantom. For more realistic geometries, like a small gravel dumpster, Monte Carlo simulation shows that the calibration factor obtained with a larger homogeneous phantom is correct within about 20%, if sample density is taken as the influencing parameter. Finally, simulation can be used to estimate the effect of a contamination hotspot. The research supporting this paper shows that activity could be largely underestimated in the event of a centrally-located hotspot and overestimated for a peripherally-located hotspot if the sample is assumed to be homogeneously contaminated. This demonstrates the usefulness of being able to complement experimental methods with Monte Carlo simulations in order to estimate calibration factors that cannot be directly measured because of a lack of available material or specific geometries.
Resumo:
Aim:Isolated limb perfusion (ILP) is a technique consisting in administrating doses of chemotherapy up to 20 times higher than via systemic route in a limb affected by melanoma or sarcoma to maximise tumour reduction. ILP is performed in <50 centres worldwide and leads to partial or complete response, however without effect on overall survival. As an alternative to amputation, it improves patient quality of life. We report our >10-year single centre experience on the role of nuclear medicine in ILP. Material and method:From 2000 to 2012, we performed 77 ILP (45 women, 32 men; aged 62±16 years) for 49 melanoma (64%), 25 sarcoma (32%) and 3 others tumors (2 desmoid tumours and 1 aggressive fibromatosis) (3%). The affected limb vascularisation is isolated from the systemic circulation (SYS) using extracorporeal circulation, and chemotherapy (usually TNF and Melphalan) is administered. Peroperatively, limb isolation and eventual leakage from ILP to SYS are monitored by continuous measurement using a gamma-probe placed over the heart (150MBq of 99mTc-human serum albumin in ILP and 4MBq in SYS). The maximum acceptable leakage to the systemic circulation is 10% (maximum tolerated systemic TNF dose). Results:In total, 47 patients (61%) had positive leaks from the ILP to SYS of 4.1±14.5% (median 1% interquartile range 0.4% to 3.2%, range 0 to 100%) and 30 patients (39%) had negative leaks from the SYS to ILP of -0.9±1.2% (median -0.5%, interquartile range -0.8% to -0.2%, range -4.8% to -0.1%). In only 2 patients (2.6%), leaks >10% were observed leading to interrupting ILP. Conclusion:Nuclear Medicine has a crucial role for the safety and quality of ILP in monitoring leakage peroperatively and help deciding whether the procedure should be interrupted to minimize systemic toxicity.
Resumo:
Heavy-ion reactions and other collective dynamical processes are frequently described by different theoretical approaches for the different stages of the process, like initial equilibration stage, intermediate locally equilibrated fluid dynamical stage, and final freeze-out stage. For the last stage, the best known is the Cooper-Frye description used to generate the phase space distribution of emitted, noninteracting particles from a fluid dynamical expansion or explosion, assuming a final ideal gas distribution, or (less frequently) an out-of-equilibrium distribution. In this work we do not want to replace the Cooper-Frye description, but rather clarify the ways of using it and how to choose the parameters of the distribution and, eventually, how to choose the form of the phase space distribution used in the Cooper-Frye formula. Moreover, the Cooper-Frye formula is used in connection with the freeze-out problem, while the discussion of transition between different stages of the collision is applicable to other transitions also. More recently, hadronization and molecular dynamics models have been matched to the end of a fluid dynamical stage to describe hadronization and freeze-out. The stages of the model description can be matched to each other on space-time hypersurfaces (just like through the frequently used freeze-out hypersurface). This work presents a generalized description of how to match the stages of the description of a reaction to each other, extending the methodology used at freeze-out, in simple covariant form which is easily applicable in its simplest version for most applications.
Resumo:
Vascular calcification is a hallmark of advanced atherosclerosis. Here we show that deletion of the nuclear receptor PPARγ in vascular smooth muscle cells of low density lipoprotein receptor (LDLr)-deficient mice fed an atherogenic diet high in cholesterol, accelerates vascular calcification with chondrogenic metaplasia within the lesions. Vascular calcification in the absence of PPARγ requires expression of the transmembrane receptor LDLr-related protein-1 in vascular smooth muscle cells. LDLr-related protein-1 promotes a previously unknown Wnt5a-dependent prochondrogenic pathway. We show that PPARγ protects against vascular calcification by inducing the expression of secreted frizzled-related protein-2, which functions as a Wnt5a antagonist. Targeting this signalling pathway may have clinical implications in the context of common complications of atherosclerosis, including coronary artery calcification and valvular sclerosis.
Resumo:
Cyclooxygenase-derived prostaglandin E(2) (PGE(2)) is the predominant prostanoid found in most colorectal cancers (CRC) and is known to promote colon carcinoma growth and invasion. However, the key downstream signaling pathways necessary for PGE(2)-induced intestinal carcinogenesis are unclear. Here we report that PGE(2) indirectly transactivates PPARdelta through PI3K/Akt signaling, which promotes cell survival and intestinal adenoma formation. We also found that PGE(2) treatment of Apc(min) mice dramatically increased intestinal adenoma burden, which was negated in Apc(min) mice lacking PPARdelta. We demonstrate that PPARdelta is a focal point of crosstalk between the prostaglandin and Wnt signaling pathways which results in a shift from cell death to cell survival, leading to increased tumor growth.
Resumo:
Activation of the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway is known to play a key role in cardiogenesis and to afford cardioprotection against ischemia-reperfusion in adult. However, involvement of JAK2/STAT3 pathway and its interaction with other signaling pathways in developing heart transiently submitted to anoxia remains to be explored. Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30 min) and reoxygenation (80 min) with or without the antioxidant MPG, the JAK2/STAT3 inhibitor AG490 or the PhosphoInositide-3-Kinase (PI3K)/Akt inhibitor LY-294002. Time course of phosphorylation of STAT3α(tyrosine705) and Reperfusion Injury Salvage Kinase (RISK) proteins [PI3K, Akt, Glycogen Synthase Kinase 3beta (GSK3beta), Extracellular signal-Regulated Kinase 2 (ERK2)] was determined in homogenate and in enriched nuclear and cytoplasmic fractions of the ventricle. STAT3 DNA-binding was determined. The chrono-, dromo- and inotropic disturbances were also investigated by electrocardiogram and mechanical recordings. Phosphorylation of STAT3α(tyr705) was increased by reoxygenation, reduced (~50%) by MPG or AG490 but not affected by LY-294002. STAT3 and GSK3beta were detected both in nuclear and cytoplasmic fractions while PI3K, Akt and ERK2 were restricted to cytoplasm. Reoxygenation led to nuclear accumulation of STAT3 but unexpectedly without DNA-binding. AG490 decreased the reoxygenation-induced phosphorylation of Akt and ERK2 and phosphorylation/inhibition of GSK3beta in the nucleus, exclusively. Inhibition of JAK2/STAT3 delayed recovery of atrial rate, worsened variability of cardiac cycle length and prolonged arrhythmias as compared to control hearts. Thus, besides its nuclear translocation without transcriptional activity, oxyradicals-activated STAT3α can rapidly interact with RISK proteins present in nucleus and cytoplasm, without dual interaction, and reduce the anoxia-reoxygenation-induced arrhythmias in the embryonic heart.
Resumo:
Therapeutic engineered nanoparticles (NPs), including ultrasmall superparamagnetic iron oxide (USPIO) NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, the effects of non-stabilized USPIO NPs (NS-USPIO NPs), oleic-acid-stabilized USPIO NPs (OA-USPIO NPs), and free oleic acid (OA) were compared in human HT29 and CaCo2 colon epithelial cancer cells. First the biophysical characteristics of NS-USPIO NPs and OA-USPIO NPs in water, in cell culture medium supplemented with fetal calf serum, and in cell culture medium preconditioned by HT29 and CaCo₂ cells were determined. Then, stress responses of the cells were evaluated following exposure to NS-USPIO NPs, OA-USPIO NPs, and free OA. No modification of the cytoskeletal actin network was observed. Cell response to stress, including markers of apoptosis and DNA repair, oxidative stress and degradative/autophagic stress, induction of heat shock protein, or lipid metabolism was determined in cells exposed to the two NPs. Induction of an autophagic response was observed in the two cell lines for both NPs but not free OA, while the other stress responses were cell- and NP-specific. The formation of lipid vacuoles/droplets was demonstrated in HT29 and CaCo₂ cells exposed to OA-USPIO NPs but not to NS-USPIO NPs, and to a much lower level in cells exposed to equimolar concentrations of free OA. Therefore, the induction of lipid vacuoles in colon cells exposed to OA utilized as a stabilizer for USPIO NPs is higly amplified compared to free OA, and is not observed in the absence of this lipid in NS-USPIO NPs.