982 resultados para NMR RELAXATION
Resumo:
Here we report the primary structure of a novel peptide, named helokinestatin-5 (VPPPLQMPLIPR), from the venom of the Gila monster (Heloderma suspectum). Helokinestatin-5 differs in structure from helokinestatin-3 by deletion of a single prolyl residue in the N-terminally located polyproline region. Two different biosynthetic precursors were consistently cloned from a venom-derived cDNA library. The first encoded helokinestatins 1–4 and a single copy of C-type natriuretic peptide, as previously described, whereas the second was virtually identical, lacking only a single prolyl codon as found in the mature attenuated helokinestatin-5 peptide. Helokinestatins 1–3 and 5 were synthesized by solid-phase fmoc chemistry and each synthetic replicate was found to antagonize the relaxation effect induced by bradykinin on rat tail artery smooth muscle. Helokinestatins thus represent a novel family of vasoactive peptides from the venom of helodermatid lizards
Resumo:
Background-Associations between genotype and intellectual outcome in patients with phenylketonuria are complicated because intelligence is influenced by many variables, including environmental factors and other genetic determinants. Intellectual changes with age, both on and after relaxation of diet, vary within the patient population. This study aims to determine whether a significant association exists between genotype and change in intelligence after relaxation of diet.
Resumo:
Pretty vacant: The excellent oxygen storage capacity (OSC) of ?-Ce2Zr2O8 (see picture; Ce gray, Zr green, O red) is shown to be a result of its unique structural features; after removing oxygen atoms, the structural relaxation is local (vacancy shown in brown), and both the localized structural relaxation and the number of localized structural relaxations are maximized.
Resumo:
In this study data generated by H-1 NMR spectroscopy were combined with chemometrics to analyse beef samples aged over a 21 day period. In particular, the amino acids, of which 12 were identified were found to increase over the ageing period with samples matured for 3 days having notably lower concentrations than carcasses aged for 21 days. This is believed to be a result of increased proteolysis within the muscle. This novel approach of using high resolution NMR spectrometry to analyse beef samples has not previously been reported and these findings demonstrate the potential of this technique linked with HPLC to be used as a suitable method for profiling meat samples.
Resumo:
The objectives were to determine if the skin secretion of the European yellow-bellied toad (Bombina variegata), in common with other related species, contains a bradykinin inhibitor peptide and to isolate and structurally characterize this peptide. Materials and Methods: Lyophilized skin secretion obtained from this toad was subjected to reverse phase HPLC fractionation with subsequent bioassay of fractions for antagonism of the bradykinin activity using an isolated rat tail artery smooth muscle preparation. Subsequently, the primary structure of the peptide was established by a combination of microsequencing, mass spectroscopy, and molecular cloning, following which a synthetic replicate was chemically synthesised for bioassay. Results: A single peptide of molecular mass 2300.92 Da was resolved in HPLC fractions of skin secretion and its primary structure determined as IYNAIWP-KH-NK-KPGLL-. Database interrogation with this sequence indicated that this peptide was encoded by skin kininogen-1 previously cloned from B. variegata. The blank cycles were occupied by cysteinyl (C) residues and the peptide was located toward the C-terminus of the skin kininogen, and flanked N-terminally by a classical -KR- propeptide convertase processing site. The peptide was named IC-20 in accordance (I = N-terminal isoleucine, C = C-terminal cysteine, 20 = number of residues). Like the natural peptide, its synthetic replicate displayed an antagonism of bradykinin-induced arterial smooth muscle relaxation. Conclusion: IC-20 represents a novel bradykinin antagonizing peptide from amphibian skin secretions and is the third such peptide found to be co-encoded with bradykinins within skin kininogens.
Resumo:
beta-D-glucose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate in a 6 : 1 molar ratio (ionic liquid : glucose) has been studied by neutron scattering, NMR and molecular dynamics simulations. Good agreement was found between simulated neutron scattering profiles generated for isotopically substituted liquid systems and those experimentally determined as well as between simulated and experimental diffusion coefficients obtained by Pulsed Field Gradient NMR spectroscopy. The overriding glucose-ionic liquid interactions in the liquid are hydrogen-bonding between acetate oxygens and sugar hydroxyl groups. The ionic liquid cation was found to play only a minor role in the solvation of the sugar and does not participate in hydrogen-bonding with the sugar to any significant degree. NOESY experiments lend further evidence that there is no direct interaction between sugar hydroxyl groups and acidic hydrogens on the ionic liquid cation.
Resumo:
The proton NMR spectra of aryl n-propyl sulfides gave rise to what may appear to be first-order proton NMR spectra. Upon oxidation to the corresponding sulfone, the spectra changed appearance dramatically and were clearly second-order. A detailed analysis of these second-order spectra, in the sulfone series, provided vicinal coupling constants which indicated that these compounds had a moderate preference for the anti-conformer, reflecting the much greater size of the sulfone over the sulfide. It also emerged, from this study, that the criterion for observing large second-order effects in the proton NMR spectra of 1,2-disubstituted ethanes was that the difference in vicinal coupling constants must be large and the difference in geminal coupling constants must be small. n-Propyl triphenylphosphonium bromide and 2-trimethylsilylethanesulfonyl chloride, and derivatives thereof, also exhibited second-order spectra, again due to the bulky substituents. Since these spectra are second-order due to magnetic nonequivalence of the nuclei in question, not chemical shifts, the proton spectra are perpetually second-order and can never be rendered first-order by using higher field NMR spectrometers.
Resumo:
Background and purpose: Obestatin is a recently-discovered gastrointestinal peptide with established metabolic actions, which is linked to diabetes and may exert cardiovascular benefits. Here we aimed to investigate the specific effects of obestatin on vascular relaxation. Experimental approach: Cumulative relaxation responses to obestatin peptides were assessed in isolated rat aorta and mesenteric artery (n=8) in the presence/absence of selective inhibitors. Complementary studies were performed in cultured bovine aortic endothelial cells (BAEC). Key results: Obestatin peptides elicited concentration-dependent relaxation in both aorta and mesenteric artery. Responses to full-length obestatin(1-23) were greater than those to obestatin(1-10) and obestatin(11-23). Obestatin(1-23)-induced relaxation was attenuated by endothelial denudation, L-NAME (NO synthase inhibitor), high extracellular K(+) , GDP-ß-S (G protein inhibitor), MDL-12,330A (adenylate cyclase inhibitor), wortmannin (PI3K inhibitor), KN-93 (CaMKII inhibitor), ODQ (guanylate cyclase inhibitor) and iberiotoxin (BK(Ca) blocker), suggesting that it is mediated by an endothelium-dependent NO signalling cascade involving an adenylate cyclase-linked G protein-coupled receptor, PI3K/Akt, Ca(2+) -dependent eNOS activation, soluble guanylate cyclase and modulation of vascular smooth muscle K(+) . Supporting data from BAEC indicated that nitrite production, intracellular Ca(2+) and Akt phosphorylation were increased after exposure to obestatin(1-23). Relaxations to obestatin(1-23) were unaltered by inhibitors of candidate endothelium-derived hyperpolarising factors (EDHFs) and combined SK(Ca) /IK(Ca) blockade, suggesting that EDHF-mediated pathways were not involved. Conclusions and Implications: Obestatin produces significant vascular relaxation via specific activation of endothelium-dependent NO signalling. These actions may be important in normal regulation of vascular function and are clearly relevant to diabetes, a condition characterised by endothelial dysfunction and cardiovascular complications.
Resumo:
The dyes Nile Blue (C I Basic Blue 12) and Thionine (C I 52000) were examined in both ionic and neutral forms in different solvents using NMR and UV-visible spectroscopy to firmly establish the structures of the molecules and to assess the nature and extent of their aggregation H-1 and C-13 NMR assignments and chemical shift data were used together with nuclear Overhauser effect information to propose a self-assembly structure These data were supplemented with variable temperature dilution and diffusion-based experimental results using H-1 NMR spectroscopy thereby enabling extended aggregate structures to be assessed in terms of the relative strength of self-association and the extent to which extended aggregates could form (C) 2010 Elsevier Ltd All rights reserved
Resumo:
We present a study on the transport properties through conductivity (s), viscosity (?), and self-diffusion coefficient (D) measurements of two pure protic ionic liquids—pyrrolidinium hydrogen sulfate, [Pyrr][HSO4], and pyrrolidinium trifluoroacetate, [Pyrr][CF3COO]—and their mixtures with water over the whole composition range at 298.15 K and atmospheric pressure. Based on these experimental results, transport mobilities of ions have been then investigated in each case through the Stokes–Einstein equation. From this, the proton conduction in these PILs follows a combination of Grotthuss and vehicle-type mechanisms, which depends also on the water composition in solution. In each case, the displacement of the NMR peak attributed to the labile proton on the pyrrolidinium cation with the PILs concentration in aqueous solution indicates that this proton is located between the cation and the anion for a water weight fraction lower than 8%. In other words, for such compositions, it appears that this labile proton is not solvated by water molecules. However, for higher water content, the labile protons are in solution as H3O+. This water weight fraction appears to be the solvation limit of the H+ ions by water molecules in these two PILs solutions. However, [Pyrr][HSO4] and [Pyrr][CF3COO] PILs present opposed comportment in aqueous solution. In the case of [Pyrr][CF3COO], ?, s, D, and the attractive potential, Epot, between ions indicate clearly that the diffusion of each ion is similar. In other words, these ions are tightly bound together as ion pairs, reflecting in fact the importance of the hydrophobicity of the trifluoroacetate anion, whereas, in the case of the [Pyrr][HSO4], the strong H-bond between the HSO4– anion and water promotes a drastic change in the viscosity of the aqueous solution, as well as on the conductivity which is up to 187 mS·cm–1 for water weight fraction close to 60% at 298 K.
Resumo:
Detection of growth-promoter use in animal production systems still proves to be an analytical challenge despite years of activity in the field. This study reports on the capability of NMR metabolomic profiling techniques to discriminate between plasma samples obtained from cattle treated with different groups of growth-promoting hormones (dexamethasone, prednisolone, oestradiol) based on recorded metabolite profiles. Two methods of NMR analysis were investigated—a Carr–Purcell–Meiboom–Gill (CPMG)-pulse sequence technique and a conventional 1H NMR method using pre-extracted plasma. Using the CPMG method, 17 distinct metabolites could be identified from the spectra. 1H NMR analysis of extracted plasma facilitated identification of 23 metabolites—six more than the alternative method and all within the aromatic region. Multivariate statistical analysis of acquired data from both forms of NMR analysis separated the plasma metabolite profiles into distinct sample cluster sets representative of the different animal study groups. Samples from both sets of corticosteroid-treated animals—dexamethasone and prednisolone—were found to be clustered relatively closely and had similar alterations to identified metabolite panels. Distinctive metabolite profiles, different from those observed within plasma from corticosteroid-treated animal plasma, were observed in oestradiol-treated animals and samples from these animals formed a cluster spatially isolated from control animal plasma samples. These findings suggest the potential use of NMR methodologies of plasma metabolite analysis as a high-throughput screening technique to aid detection of growth promoter use.