975 resultados para N-DESMETHYL METABOLITES
Resumo:
The enantioselective biotransformation of propranolol (Prop) by the endophytic fungi Phomopsis sp., Glomerella cingulata, Penicillium crustosum, Chaetomium globosum and Aspergillus fumigatus was investigated by studying the kinetics of the aromatic hydroxylation reaction with the formation of 4-hydroxypropranolol (4-OH-Prop). Both Prop enantiomers were consumed by the fungi in the biotransformation process, but the 4-hydroxylation reaction yielded preferentially (-)-(S)-4-OH-Prop. The quantity of metabolites biosynthesized varied slightly among the evaluated endophytic fungi. These results show that all investigated endophytic fungi could be used as biosynthetic tools in biotransformation processes to obtain the enantiomers of 4-OH-Prop.
Resumo:
The biodegradation of lignocellulosic materials is an important natural process because it is responsible for the carbon recycling. When induced under controlled conditions, this process can be used for technological applications such as biopulping, biobleaching of cellulosic pulps, pre-treatment for subsequent saccharification and cellulosic-ethanol production, and increase of the digestibility in agroindustrial residues used for animal feed. In the present work, the enzymatic and non-enzymatic mechanisms involved in the biodegradation of lignocellulosic materials by fungi were reviewed. Furthermore, the technological applications of these extracellular metabolites are presented and discussed.
Resumo:
In order to evaluate the effects of environmental factors on the content of secondary metabolites, the chemical profiles of infusions from leaves of seven genotypes of Lippia gracilis Schauer, sourced from two locations (Sergipe and Bahia state) and collected during different seasons: summer (with and without irrigation) and winter, were determined by HPLC-DAD. The fingerprint chromatograms were analyzed by PCA to evaluate similarities and differences among the samples. Results revealed differences among genotypes collected and cultivated under the same conditions, suggesting that three genotypes have greater resistance to drought conditions.
Resumo:
Our solemn homage to the great Master Otto R. Gottlieb who knew how to teach the mystery of evolutionary relationships between chemistry and its natural sources. The micromolecular chemical study of the family Bignoniaceae shows a profile predominantly characterized by the occurrence of metabolites derived from acetic acid biosynthetic pathways such as terpenoids, quinones, flavonoids and special aromatic derivatives. Analysis of different chemosystematic parameters for the metabolite data collected, provided valuable information for the systematic characterization of the Bignoniaceae family within the Angiosperm derived taxa.
Resumo:
Phytochemical studies of the leaves and stem have led to the identification of the known acridone alkaloids arborinine, methyl-arborinine, 1-hydroxy-3-methoxy-N-methyl acridone, xanthoxoline, 1,2,3,5-tetramethoxy-N-methylacridone, toddaliopsin C and the new seco acridone alkaloid inopinatin. The known quinoline alkaloids 2-phenyl-1-methyl-quinolin-4(1H)-one, 2-phenyl-1-methyl-7-methoxy-quinolin-4(1H)-one, dictamnine, and the coumarins scopoletin and marmesin were also isolated. The isolated compounds and the distribution of secondary metabolites, which are systematically important, obtained from literature, clearly confirmed that some species formerly described in the genera Angostura and Galipea in fact shall belong to the genus Conchocarpus.
Resumo:
This the first phytochemical investigation of Mimosa artemisiana (Leguminosae-Mimosoideae) describing the isolation and identification of quercitrin, myricitrin, 3,5,4´-trihydroxi-6,7-dimethoxyflavone (6,7-dimethylkaepferol), flavolignans, 3-O-β-D-glucopyranosil sitosterol, lupeol, sitostenone, stigmastenone, campestenone, sitosterol, stigmasterol, campesterol, methyl indole-3-carboxilate and indole-3-carboxaldehyde in the extracts from the leaves and wood of this plant. This is the first registry of 6,7-dimethoxy,4'-hydroxy-flavona and the flavonolignans in this genera. The isolation of all metabolites was made by chromatographic methods and the structures were established on the basis of IR, MS, ¹H and 13C NMR spectra analysis, comparison with literature data and GC-MS of mixtures analysis.
Resumo:
The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.
Resumo:
This work describes the biflavonoids found in species of Clusiaceae, particularly the genera Garcinia and Calophyllum, emphasizing the importance of these metabolites as chemical markers of this family, their contribution to the pharmacological potential of these species, besides the promising potential of these compounds in the search for new drugs.
Resumo:
The chemistry of natural products has been remarkably growing in the past few decades in Brazil. Aspects related to the isolation and identification of new natural products, as well as their biological activities, have been achieved in different laboratories working on this subject in the country. More recently, the introduction of new molecular biology tools has strongly influenced the research on natural products, mainly those produced by microorganisms, creating new possibilities to assess the chemical diversity of secondary metabolites. This paper describes some ideas on how the research on natural products can have a considerable input from molecular biology in the generation of chemical diversity. We also explore the role of microbial natural products in mediating interspecific interactions and their relevance to ecological studies. Examples of the generation of chemical diversity are highlighted by using genome mining, mutasynthesis, combinatorial biosynthesis, metagenomics, and synthetic biology, while some aspects of microbial ecology are also discussed. The idea to bring up this topic is linked to the remarkable development of molecular biology techniques to generate useful chemicals from different organisms. Here, we focus mainly on microorganisms, even though similar approaches have also been applied to the study of plants and other organisms. Investigations in the frontier of chemistry and biology require interactions between different areas, characterizing the interdisciplinarity of this research field. The necessity of a real integration of chemistry and biology is pivotal to finding correct answers to a number of biological phenomena. The use of molecular biology tools to generate chemical diversity and control biosynthetic pathways is largely explored in the production of important biologically active compounds. Finally, we briefly comment on the Brazilian organization of research in this area, the necessity of new strategies for the graduation programs, and the establishment of networks as a way of organization to overcome some of the problems faced in the area of natural products.
Resumo:
Brazilian biodiversity is a colossal source of secondary metabolites with remarkable structural features, which are valuable in further biodiscovery studies. In order to fully understand the relations and interactions of a living system with its surroundings, efforts in natural product chemistry are directed toward the challenge of detecting and identifying all the molecular components present in complex samples. It is plausible that this endeavor was born out of recent technological sophistication in secondary metabolite identification with sensitive spectroscopic instruments (MS and NMR) and higher resolving power of chromatographic systems, which allow a decrease in the amount of required sample and time to acquire data. Nevertheless, the escalation of data acquired in these analyses must be sorted with statistical and multi-way tools in order to select key information. Chromatography is also of paramount importance, more so when selected compounds need to be isolated for further investigation. However, in the course of pursuing a "greener" environment, new policies, with an aim to decrease the use of energy and solvents, are being developed and incorporated into analytical methods. Metabolomics could be an effective tool to answer questions on how living organisms in our huge biodiversity work and interact with their surroundings while also being strategic to the development of high value bio-derived products, such as phytotherapeutics and nutraceuticals. The incorporation of proper phytotherapeutics in the so-called Brazilian Unified Health System is considered an important factor for the urgent improvement and expansion of the Brazilian national health system. Furthermore, this approach could have a positive impact on the international interest toward scientific research developed in Brazil as well as the development of high value bio-derived products, which appear as an interesting economic opportunity in national and global markets. Thus, this study attempts to highlight the recent advances in analytical tools used in detection of secondary metabolites, which can be useful as bioproducts. It also emphasizes the potential avenues to be explored in Brazilian biodiversity, known for its rich chemical diversity.
Resumo:
In this research work the effects of four solvents and their mixtures on the extraction of chlorogenic acids, caffeine and trigonelline in crude extracts of four coffee cultivars, traditional red bourbon, IAPAR59, IPR101 and IPR108 cultivars, were investigated by UV spectrophotometry and UV spectra obtained from RP-HPLC-DAD. The experimental results and the principal component analysis of UV spectra showed that the effect of solvent extraction of the metabolites does not depend on cultivars, because the spectral characteristics are similar, but the concentrations are different. The UV and UV-DAD spectra for four simplex centroid design mixtures were also similar but the concentrations of caffeine, trigonelline and the chlorogenic acids are different and depend on the solvent used in the extraction.
Resumo:
Screening of biomass of a new marine-derived strain of Penicillium roqueforti, as produced by liquid-state fermentation, led to the identification of several volatile organic compounds active in the fatty acid pathway as well as fragments produced by their catabolism, terpenoids, and metabolites from the shikimic acid pathway. In addition, five non-volatile organic compounds, triolein, ergosterol peroxide, 9(11)-dehydroergosterol peroxide, 4-hydroxybenzaldehyde, and d-mannitol, were isolated and identified by spectroscopy. The results showed that this fungal strain did not produce any mycotoxin in the culture conditions applied, and thus is useful for industrial applications, where high value-added biomolecules are generated.
Resumo:
Polygala cyparissias is a plant widespread in Southern Latin America. Recently, we demonstrated the gastroprotective activity of the extract, as well as for one of the isolated metabolites-1,7-dihydroxy-2,3-methylenedioxyxanthone (MDX). In this study, a HPLC method for the quantification of MDX was validated. The HPLC method was linear (0.5-24 µg mL-1 of MDX) with good accuracy, precision and robustness. The content of MDX in the extracts from whole and different parts of the plant ranged from 0 to 5.4 mg g-1 and the gastroprotective index ranged from 72.1 to 99.1%. Thus, the method might be used for the standardization of the extracts based on the MDX marker.
Resumo:
The bioassay-guided purification of ethanolic extracts from inflorescences of Piper subtomentosum Trel. & Yunck and aerial part of Piper septuplinervium (Miq. ) C. DC. led to isolation of five flavonoids, uvangoletin (1), galangin (2), chrysin (5), 5-hydroxy-4',7-dimethoxy-flavone (6), pinostrobin (7); one amide, N-p-coumaroil-tyramine (4); one acylglycerol, monopalmitin (3); one derivative of acid, protocatechuic acid (8); and glycosydated sterol, daucosterol (9). Their structures were elucidated on the basis of spectroscopy and spectrometry data and by comparison with data reported in the literature. The isolated compounds were tested against Spodoptera frugiperda. The results showed galangin and protocatechuic acid to be the most active (LC 50 13.63 and 17.16 ppm, respectively).
Resumo:
This review sought to highlight the importance of natural products versus synthetic products, as bioactive molecules, towards the development of better management practices in aquaculture. The nature, structure, activity, and applications of these naturally-occurring high value-added compounds are described, as well as the methodology used for their study. Examples include the well-known rotenone, eugenol, forskolin, isatin, malyngamide, chlorodesmine, pachydictyol, fimbrolide, and other potentially active molecules in aquaculture.