1000 resultados para Multiple ovulations
Resumo:
The electrospray ionization ion trap multiple-stage tandem mass spectrometry (ESI-MSn) and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-ICR-MSn) have been applied successfully to the direct investigation of a number of dibenzocyclooctadiene lignan constituents from the methanol extracts of the Fructus Schisandrae in the positive ion mode. The detailed structural characterization of the same skeleton and different peripheral substituents had been studied and the precise elemental compositions of ions at high mass resolution had been obtained. So the fragmentation mechanisms could be clarified.
Resumo:
The principal components, isoflavonoids and astragalosides, in the extract of Radix Astragali were detected by a high-performance liquid chromatography Couple to electrospray ionization ion trap multiple-stage tandem mass spectrometry (HPLC-ESI-IT-MSn) method. By comparing the retention time (t(R)) of HPLC, the ESI-MSn data and the structures of analyzed Compounds with the data of reference compounds and in the literature, 17 isoflavonoids and 12 astragalosides have been identified or tentatively deduced. By Virtue of the extracted ion chromatogram (EIC) mode, simultaneous determination of isoflavonoids and astragalosides could be achieved when the different components formed overlapped peaks. And this method has been utilized to analyze the constituents in extracts of Radix Astragali from Helong City and of different growth years. Then the antioxidant activity of different samples has been Successfully investigated by HPLC-ESI-MS method in multiple selected ion monitoring(MIM) mode, applying the spin trapping technology, and the Ferric Reducing Antioxidant Power (FRAP) assay was applied to support the result.
Resumo:
A reversed-phase high-performance liquid chromatography-diode array detector-electrospray ionization multiple-stage tandem mass spectrometry (RP-HPLC-DAD-ESl-MSn) method has been developed for the detection and analysis of lignan constituents in the methanol extract from the fruits of Schisandra chinensis (Turcz.) Baill. RP-HPLC-DAD-ESI-MSn and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-TCR-MSn) have been applied to investigate the characteristic product ions of four lignan reference compounds. Then, the logical fragmentation pathways of the lignans have been proposed. By comparing the retention time (t(R)) of HPLC, the ESI-MSn data and the structures of analyzed compounds with the data of reference compounds and in the literature, 11 peaks in HPLC have been unambiguously identified and another 5 peaks have been tentatively identified or deduced. Also, in the present paper, the extracted ion chromatograms (EIC) have been used to analyze the lignan isomers. The experimental results demonstrate that RP-HPLC-DAD-ESI-MSn is a specific and useful method for the identification of the lignan constituents and their isomers.
Resumo:
In this Article, we demonstrate an effective hydrothermal route for the synthesis of multiple PDDA-protected (PDDA = poly(diallyl dimethylammonium) chloride) noble-metal (including silver, platinum, palladium, and gold) nanostructures in the absence of any seeds and surfactants, in which PDDA, an ordinary and water-soluble polyelectrolyte, acts as both a reducing and a stabilizing agent. Under optimal experimental conditions, Ag nanocubes, Pt and Pd nanopolyhedrons, and Au nanoplates can be obtained, which were characterized by transmission electron microscopy, scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. More importantly, the nanostrucfures synthesized show potential applications in surface-enhanced Raman scattering and electrocatalysis, in which Ag nanocubes and Pt nanopolyhedrons were chosen as the examples, respectively.
Resumo:
Four isomers of steroidal saponins were differentiated using multiple-stage tandem mass spectrometry combined with electrospray ionization (ESI-MSn). With the addition of lithium salt, the [M+Li](+) ions of saponins were observed in the ESI spectra. MSn spectra of these [M+Li](+) ions provided detailed structural information and allowed differentiation of the four isomeric saponins. The cross-ring cleavage ions from the saccharide chains of the saponins could be used as diagnostic ions for information concerning the linkage of the sugar moieties of the saponins. The masses of the X, A, Y and C type fragment ions formed from [M+Li](+) ions of the isomeric saponins provided information defining the methyl group locations.
Resumo:
A phosphorescent multiple emissive layer, in which a blue emissive layer is sandwiched between red and green ones, is employed in a white organic light-emitting device (OLED). This OLED has a maximum luminance of 48 000 cd/m(2) at 17 V, a maximum power efficiency of 9.9 lm/W at 4 V, and a color rendering index of 82. In addition, the emission color of this device is fairly stable at high luminances: its Commission Internationale de l(')Eclairage coordinate slightly changes from (0.431, 0.436) to (0.400, 0.430) when the luminance ranges from 2000 to 40 000 cd/m(2).
Resumo:
A useful method for the synthesis of various gold nanostructures is presented. The results demonstrated that flowerlike nanoparticle arrays, nanowire networks, nanosheets, and nanoflowers were obtained on the solid substrate under different experimental conditions. In addition, surface-enhanced Raman scattering (SERS) spectra of 4-aminothiophenol (4-ATP) on the as-prepared gold nanostructures of various shapes were measured, and their shape-dependent properties were evaluated. The intensity of the SERS signal was the smallest for the gold nanosheets, and the flowerlike nanoparticle arrays gave the strongest SERS signals.
Resumo:
We report the multiple morphologies and their transformation of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) in low-alkanol solvents. In order to improve the solubility of polystyrene block in alcohol solvents, the solution of block copolymer sample was treated at a higher temperature, and then the influence of rate of decreasing temperature on multiple morphologies (including spheres, rods, vesicles, porous vesicles, large compound vesicles, and large compound micelles) was observed. The transformation of spheres to rods, to tyre-shaped large compound micelles, and to sphere-shaped large compound micelles was also realized. The formation mechanisms of the multiple morphologies and their transformation are discussed briefly.
Resumo:
The wide-angle X-ray diffraction (WAXD) patterns of isothermally crystallized Nylon 1212 show that gamma-form crystals form below 90 degrees C and the alpha-form crystals call exist above 140 degrees C. In the temperature range of 90-140 degrees C, the a-form gamma-form crystals coexist. Variable-temperature WAXD exhibits that the nylon 1212 gamma-form does not show crystal and transition on heating, while a-form isothermally crystallized at 160 degrees C exhibits Brill transition at a little higher than 180 degrees C on heating. The multiple melting behaviors of Nylon 1212 isothermally crystallized from melt come from a complex mechanism of different crystal structures, dual lamellar population and melting-recrystallization. In polarized optical microscope (POM) observations, Nylon 1212 isothermally crystallized at 175 degrees C shows the ringed banded spherulites. However, at temperatures below 160 degrees C the ringed handed image disappears, and cross-extinct spherulites are formed.
Resumo:
The multiple melting behavior of several commercial resins of isotactic polypropylene (iPP) and random copolymer, poly(propylene-co-ethylene) (PPE), after stepwise isothermal crystallization (SIC) were studied by differential scanning calorimeter and wide-angle X-ray diffraction (WAXD). For iPP samples, three typical melting endotherms appeared after SIC process when heating rate was lower than 10 degreesC/min. The WAXD experiments proved that only alpha-form crystal was formed during SIC process and no transition from alpha1- to alpha2-form occurred during heating process. Heating rate dependence for each endotherm was discussed and it was concluded that there were only,two major crystals with different thermal stability. For the PPE sample, more melting endotherms appeared after stepwise isothermal crystallization. The introduction of ethylene comonomer in isotactic propylene backbone further decreased the regularity of molecular chain, and the short isotactic propylene sequences could crystallize into gamma-form crystal having a low melting temperature whereas the long sequences crystallized into alpha-form crystal having high melting temperature.
Resumo:
Electrospray ionization (ESI) combined with multiple-stage tandem mass spectrometry (MSn) was used to directly analyze the glycolipid mixture from bacteria Bacillus pumilus without preliminary separation. Full scan ESI-MS revealed the composition of picomole quantities of glycerolglycolipid species containing C-14-C-19 fatty acids, some of which were monounsaturated, Two main components were identified from their molecular masses and fragmentation pathways. The fragmentation pathway of the known compound compared with the investigated compound verified the proposed structure as 1(3)-acyl-2-pentadecanoyl-3(1)-O-[beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl]-sn-glycerols. A comparison of the multiple tandem mass spectra of the different alkali-metal cation adducts indicates that the intensity of fragments and the dissociation pathways are dependent on the alkali-metal type, The basic structures of glycerolglycolipids were reflected clearly from the fragmentation patterns of the sodium cations, The intense fragments of the sugar residue from the precursor ions were obtained from the lithiated adduct ions. ESI-MSn spectra of [M + K](+) ions did not provide as much fragmentation as [M + Na](+) and [M + Li](+) adducts, but their spectra allow the position of glycerol acylation to be determined. On the basis of MS2 spectra of[M + K](+) ions, it was established that all components have a C-15:0 fatty acid at the sn-2 position of the glycerol backbone and C-14-C-19 acids at the sn-1 position of the glycerol backbone. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
During heating of semicrystalline PET, a metastable melt forms far below the equilibrium melting temperature. Crystallization kinetics of this metastable melt is discussed on the basis of DSC results. From the metastable melt almost one-dimensional growth of the crystal occurs through heterogeneous nucleation.