976 resultados para Monte-carlo Simulations
Resumo:
Les simulations ont été implémentées avec le programme Java.
Resumo:
Cette thèse présente à la fois des résultats de simulations numériques en plus de ré- sultats expérimentaux obtenus en laboratoire sur le rôle joué par les défauts de structure dans le silicium amorphe. Nos travaux de simulation numérique furent réalisés avec une nouvelle méthode de simulation Monte-Carlo cinétique pour décrire l’évolution tempo- relle de modèles de silicium amorphe endommagés sur plusieurs échelles de temps jus- qu’à une seconde à la température pièce. Ces simulations montrent que les lacunes dans le silicium amorphe sont instables et ne diffusent pas sans être détruites. Nous montrons également que l’évolution d’un modèle de silicium amorphe endommagé par une colli- sion ionique lors d’un recuit peut être divisée en deux phases : la première est dominée exclusivement par la diffusion et la création/destruction de défauts de liaison, alors que la deuxième voit les créations/destructions de liens remplacées par des échanges de liens entre atomes parfaitement coordonnés. Les défauts ont aussi un effet sur la viscosité du silicium amorphe. Afin d’approfondir cette question, nous avons mesuré la viscosité du silicium amorphe et du silicium amorphe hydrogéné sous l’effet d’un faisceau d’ions. Nous montrons que la variation de la viscosité dans les deux matériaux est différente : le silicium amorphe hydrogéné a une viscosité constante en fonction de la fluence des ions alors que le silicium amorphe pur a une viscosité qui augmente de façon linéaire. Pour de faibles fluences, la viscosité du silicium hydrogéné est plus grande que la viscosité sans hydrogène. La présence d’hydrogène diminue également l’amplitude de la variation logarithmique de la contrainte observée lors de la relaxation à la température de la pièce.
Resumo:
Un modèle de croissance et de réponse à la radiothérapie pour le glioblastome multiforme (GBM) basé le formalisme du modèle de prolifération-invasion (PI) et du modèle linéaire-quadratique a été développé et implémenté. La géométrie spécifique au patient est considérée en modélisant, d'une part, les voies d'invasion possibles des GBM avec l'imagerie du tenseur de diffusion (DTI) et, d'autre part, les barrières à la propagation à partir des images anatomiques disponibles. La distribution de dose réelle reçue par un patient donné est appliquée telle quelle dans les simulations, en respectant l'horaire de traitement. Les paramètres libres du modèle (taux de prolifération, coefficient de diffusion, paramètres radiobiologiques) sont choisis aléatoirement à partir de distributions de valeurs plausibles. Un total de 400 ensembles de valeurs pour les paramètres libres sont ainsi choisis pour tous les patients, et une simulation de la croissance et de la réponse au traitement est effectuée pour chaque patient et chaque ensemble de paramètres. Un critère de récidive est appliqué sur les résultats de chaque simulation pour identifier un lieu probable de récidive (SPR). La superposition de tous les SPR obtenus pour un patient donné permet de définir la probabilité d'occurrence (OP). Il est démontré qu'il existe des valeurs de OP élevées pour tous les patients, impliquant que les résultats du modèle PI ne sont pas très sensibles aux valeurs des paramètres utilisés. Il est également démontré comment le formalisme développé dans cet ouvrage pourrait permettre de définir un volume cible personnalisé pour les traitements de radiothérapie du GBM.
Resumo:
Les fichiers qui accompagnent mon document ont été réalisés avec le logiciel Latex et les simulations ont été réalisés par Splus(R).
Resumo:
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées. Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère. Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays. Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011.
Resumo:
Ma thèse est composée de trois essais sur l'inférence par le bootstrap à la fois dans les modèles de données de panel et les modèles à grands nombres de variables instrumentales #VI# dont un grand nombre peut être faible. La théorie asymptotique n'étant pas toujours une bonne approximation de la distribution d'échantillonnage des estimateurs et statistiques de tests, je considère le bootstrap comme une alternative. Ces essais tentent d'étudier la validité asymptotique des procédures bootstrap existantes et quand invalides, proposent de nouvelles méthodes bootstrap valides. Le premier chapitre #co-écrit avec Sílvia Gonçalves# étudie la validité du bootstrap pour l'inférence dans un modèle de panel de données linéaire, dynamique et stationnaire à effets fixes. Nous considérons trois méthodes bootstrap: le recursive-design bootstrap, le fixed-design bootstrap et le pairs bootstrap. Ces méthodes sont des généralisations naturelles au contexte des panels des méthodes bootstrap considérées par Gonçalves et Kilian #2004# dans les modèles autorégressifs en séries temporelles. Nous montrons que l'estimateur MCO obtenu par le recursive-design bootstrap contient un terme intégré qui imite le biais de l'estimateur original. Ceci est en contraste avec le fixed-design bootstrap et le pairs bootstrap dont les distributions sont incorrectement centrées à zéro. Cependant, le recursive-design bootstrap et le pairs bootstrap sont asymptotiquement valides quand ils sont appliqués à l'estimateur corrigé du biais, contrairement au fixed-design bootstrap. Dans les simulations, le recursive-design bootstrap est la méthode qui produit les meilleurs résultats. Le deuxième chapitre étend les résultats du pairs bootstrap aux modèles de panel non linéaires dynamiques avec des effets fixes. Ces modèles sont souvent estimés par l'estimateur du maximum de vraisemblance #EMV# qui souffre également d'un biais. Récemment, Dhaene et Johmans #2014# ont proposé la méthode d'estimation split-jackknife. Bien que ces estimateurs ont des approximations asymptotiques normales centrées sur le vrai paramètre, de sérieuses distorsions demeurent à échantillons finis. Dhaene et Johmans #2014# ont proposé le pairs bootstrap comme alternative dans ce contexte sans aucune justification théorique. Pour combler cette lacune, je montre que cette méthode est asymptotiquement valide lorsqu'elle est utilisée pour estimer la distribution de l'estimateur split-jackknife bien qu'incapable d'estimer la distribution de l'EMV. Des simulations Monte Carlo montrent que les intervalles de confiance bootstrap basés sur l'estimateur split-jackknife aident grandement à réduire les distorsions liées à l'approximation normale en échantillons finis. En outre, j'applique cette méthode bootstrap à un modèle de participation des femmes au marché du travail pour construire des intervalles de confiance valides. Dans le dernier chapitre #co-écrit avec Wenjie Wang#, nous étudions la validité asymptotique des procédures bootstrap pour les modèles à grands nombres de variables instrumentales #VI# dont un grand nombre peu être faible. Nous montrons analytiquement qu'un bootstrap standard basé sur les résidus et le bootstrap restreint et efficace #RE# de Davidson et MacKinnon #2008, 2010, 2014# ne peuvent pas estimer la distribution limite de l'estimateur du maximum de vraisemblance à information limitée #EMVIL#. La raison principale est qu'ils ne parviennent pas à bien imiter le paramètre qui caractérise l'intensité de l'identification dans l'échantillon. Par conséquent, nous proposons une méthode bootstrap modifiée qui estime de facon convergente cette distribution limite. Nos simulations montrent que la méthode bootstrap modifiée réduit considérablement les distorsions des tests asymptotiques de type Wald #$t$# dans les échantillons finis, en particulier lorsque le degré d'endogénéité est élevé.
Resumo:
De nombreux travailleurs sont exposés aux hydrocarbures aromatiques polycycliques (HAP). Le benzo(a)pyrène (BaP) fait partie de ce groupe de polluants. Cette substance a été classée cancérogène reconnu chez l’humain. Pour évaluer l'exposition aux HAP cancérogènes, plusieurs chercheurs ont proposé d’utiliser la mesure du 3-hydroxybenzo(a)pyrène (3-OHBaP) dans l’urine des travailleurs exposés. Dans le cadre du présent projet, deux approches de modélisation ont été développées et appliquées pour permettre une meilleure compréhension de la toxicocinétique du BaP et son biomarqueur d’intérêt actuel, le 3-OHBaP, et pour aider à interpréter les résultats de surveillance biologique. Un modèle toxicocinétique à plusieurs compartiments a été développé sur la base des données préalablement obtenues sur le rat par notre groupe. Selon le modèle, le BaP injecté par voie intraveineuse est rapidement distribué du sang vers les tissus (t½ ≈ 4 h), avec une affinité particulière pour les poumons et les composantes lipidiques des tissus. Le BaP est ensuite distribué vers la peau et le foie. Au foie, le BaP est promptement métabolisé et le 3-OHBaP est formé avec une demi-vie de ≈ 3 h. Le métabolisme pulmonaire du BaP a également été pris en compte, mais sa contribution à la cinétique globale du BaP a été jugée négligeable. Une fois formé, le 3-OHBaP est distribué vers les différents organes presque aussi rapidement que la molécule mère (t½ ≈ 2 h). Le profil temporel du 3-OHBaP dans le rein montre une accumulation transitoire en raison de la différence observée entre le taux d’entrée (t½ = 28 min) et le taux de sortie (t½ = 4,5 h). La clairance totale de 3-OHBaP du corps est principalement gouvernée par le taux de transfert de la bile vers le tractus gastro-intestinal (t½ ≈ 4 h). Le modèle toxicocinétique à plusieurs compartiments a réussi à simuler un ensemble indépendant de profils urinaires publiés sur le 3-OHBaP. Ce modèle toxicocinétique à compartiments s'est avéré utile pour la determination des facteurs biologiques déterminants de la cinétique du BaP et du 3-OHBaP. Par la suite, un modèle pharmacocinétique à base physiologique (PCBP) reproduisant le devenir du BaP et du 3-OHBaP chez le rat a été construit. Les organes (ou tissus) représentés comme des compartiments ont été choisis en fonction de données expérimentales obtenues in vivo chez le rat. Les coefficients de partition, les coefficients de perméabilité, les taux de métabolisation, les paramètres d'excrétion, les fractions absorbées et les taux d'absorption pour différentes voies d’exposition ont été obtenus directement à partir des profils sanguins, tissulaires, urinaires et fécaux du BaP et du 3-OHBaP. Les valeurs de ces derniers paramètres ont été calculées par des procédures Monte-Carlo. Des analyses de sensibilité ont ensuite été réalisées pour s’assurer de la stabilité du modèle et pour établir les paramètres les plus sensibles de la cinétique globale. Cette modélisation a permis d’identifier les facteurs déterminants de la cinétique: 1) la sensibilité élevée des paramètres de la métabolisation hépatique du BaP et du 3-OHBaP ainsi que du taux d'élimination; 2) la forte distribution du BaP dans les poumons par rapport à d'autres tissus; 3) la distribution considérable du BaP dans les tissus adipeux et le foie; 4) la forte distribution du 3-OHBaP dans les reins; 5) le transfert limité du BaP par la diffusion tissulaire dans les poumons; 6) le transfert limité du 3-OHBaP par la diffusion tissulaire dans les poumons, les tissus adipeux et les reins; 7) la recirculation entéro-hépatique significative du 3-OHBaP. Suite à des analyses de qualité des ajustements des équations du modèle aux données observées, les probabilités que les simulations reproduisent les données expérimentales par pur hasard se sont avérées toujours inférieures à 10% pour les quatre voies d’exposition : intraveineuse, orale, cutanée et respiratoire. Nous avons extrapolé les modèles cinétiques du rat à l’humain afin de se doter d’un outil permettant de reconstituer les doses absorbées chez des travailleurs exposés dans diverses industries à partir de mesures de l'évolution temporelle du 3-OHBaP dans leur urine. Les résultats de ces modélisations ont ensuite été comparés à ceux de simulations obtenues avec un modèle toxicocinétique à compartiment unique pour vérifier l’utilité comparative d’un modèle simple et complexe. Les deux types de modèle ont ainsi été construits à partir de profils sanguins, tissulaires, urinaires et fécaux du BaP et du 3-OHBaP sur des rats exposés. Ces données ont été obtenues in vivo par voie intraveineuse, cutanée, respiratoire et orale. Ensuite, les modèles ont été extrapolés à l’humain en tenant compte des déterminants biologiques essentiels des différences cinétiques entre le rat et l’humain. Les résultats ont montré que l'inhalation n'était pas la principale voie d'exposition pour plusieurs travailleurs étudiés. Les valeurs de concentrations de BaP dans l’air utilisées afin de simuler les profils d’excrétion urinaire chez les travailleurs étaient différentes des valeurs de concentrations de BaP mesurées dans l’air. Une exposition au BaP par voie cutanée semblait mieux prédire les profils temporels observés. Finalement, les deux types de modélisation se sont avérés utiles pour reproduire et pour interpréter les données disponibles chez des travailleurs.
Resumo:
Im Zuge der Novellierung der Gasnetzzugangsverordnung sowie des Erneuerbare-Energien-Gesetzes entwickelte sich die Einspeisung von Biomethan in das Erdgasnetz als alternative Investitionsmöglichkeit der Erneuerbare-Energien-Branche. Als problematisch erweist sich dabei die Identifikation und Strukturierung einzelner Risikofaktoren zu einem Risikobereich, sowie die anschließende Quantifizierung dieser Risikofaktoren innerhalb eines Risikoportfolios. Darüber hinaus besteht die Schwierigkeit, diese Risikofaktoren in einem cashflowbasierten und den Ansprüchen der Investoren gewachsenem Risikomodell abzubilden. Zusätzlich müssen dabei Wechselwirkungen zwischen einzelnen Risikofaktoren berücksichtigt werden. Aus diesem Grund verfolgt die Dissertation das Ziel, die Risikosituation eines Biomethanprojektes anhand aggregierter und isolierter Risikosimulationen zu analysieren. Im Rahmen einer Diskussion werden Strategien und Instrumente zur Risikosteuerung angesprochen sowie die Implementierungsfähigkeit des Risikomodells in das Risikomanagementsystem von Investoren. Die Risikomaße zur Beschreibung der Risikoauswirkung betrachten die Shortfälle einer Verteilung. Dabei beziehen sich diese auf die geplanten Ausschüttungen sowie interne Verzinsungsansprüche der Investoren und die von Kreditinstituten geforderte minimale Schuldendienstdeckungsrate. Im Hinblick auf die Risikotragfähigkeit werden liquiditätsorientierte Kennzahlen hinzugezogen. Investoren interessieren sich vor dem Hintergrund einer gezielten Risikosteuerung hauptsächlich für den gefahrvollsten Risikobereich und innerhalb dessen für den Risikofaktor, der die größten Risikoauswirkungen hervorruft. Zudem spielt der Zeitpunkt maximaler Risikoauswirkung eine große Rolle. Als Kernaussage dieser Arbeit wird festgestellt, dass in den meisten Fällen die Aussagefähigkeit aggregierter Risikosimulationen durch Überlagerungseffekte negativ beeinträchtigt wird. Erst durch isoliert durchgeführte Risikoanalysen können diese Effekte eliminiert werden. Besonders auffällig gestalten sich dabei die Ergebnisse der isoliert durchgeführten Risikoanalyse des Risikobereichs »Politik«. So verursacht dieser im Vergleich zu den übrigen Risikobereichen, wie »Infrastruktur«, »Rohstoffe«, »Absatzmarkt« und »Finanzmarkt«, die geringsten Wahrscheinlichkeiten avisierte Planwerte der Investoren zu unterschreiten. Kommt es jedoch zu einer solchen Planwert-Unterschreitung, nehmen die damit verbundenen Risikoauswirkungen eine überraschende Position im Risikoranking der Investoren ein. Hinsichtlich der Aussagefähigkeit des Risikomodells wird deutlich, dass spezifische Risikosichtweisen der Investoren ausschlaggebend dafür sind, welche Strategien und Instrumente zur Risikosenkung umgesetzt werden. Darüber hinaus wird festgestellt, dass die Grenzen des Risikomodells in der Validität der Expertenmeinungen und dem Auffinden einer Optimallösung zu suchen sind.
Resumo:
Auf dem Gebiet der Strukturdynamik sind computergestützte Modellvalidierungstechniken inzwischen weit verbreitet. Dabei werden experimentelle Modaldaten, um ein numerisches Modell für weitere Analysen zu korrigieren. Gleichwohl repräsentiert das validierte Modell nur das dynamische Verhalten der getesteten Struktur. In der Realität gibt es wiederum viele Faktoren, die zwangsläufig zu variierenden Ergebnissen von Modaltests führen werden: Sich verändernde Umgebungsbedingungen während eines Tests, leicht unterschiedliche Testaufbauten, ein Test an einer nominell gleichen aber anderen Struktur (z.B. aus der Serienfertigung), etc. Damit eine stochastische Simulation durchgeführt werden kann, muss eine Reihe von Annahmen für die verwendeten Zufallsvariablengetroffen werden. Folglich bedarf es einer inversen Methode, die es ermöglicht ein stochastisches Modell aus experimentellen Modaldaten zu identifizieren. Die Arbeit beschreibt die Entwicklung eines parameter-basierten Ansatzes, um stochastische Simulationsmodelle auf dem Gebiet der Strukturdynamik zu identifizieren. Die entwickelte Methode beruht auf Sensitivitäten erster Ordnung, mit denen Parametermittelwerte und Kovarianzen des numerischen Modells aus stochastischen experimentellen Modaldaten bestimmt werden können.
Resumo:
Water quality models generally require a relatively large number of parameters to define their functional relationships, and since prior information on parameter values is limited, these are commonly defined by fitting the model to observed data. In this paper, the identifiability of water quality parameters and the associated uncertainty in model simulations are investigated. A modification to the water quality model `Quality Simulation Along River Systems' is presented in which an improved flow component is used within the existing water quality model framework. The performance of the model is evaluated in an application to the Bedford Ouse river, UK, using a Monte-Carlo analysis toolbox. The essential framework of the model proved to be sound, and calibration and validation performance was generally good. However some supposedly important water quality parameters associated with algal activity were found to be completely insensitive, and hence non-identifiable, within the model structure, while others (nitrification and sedimentation) had optimum values at or close to zero, indicating that those processes were not detectable from the data set examined. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of F-ST. Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of F-ST estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of F-ST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.
Resumo:
This article introduces a new general method for genealogical inference that samples independent genealogical histories using importance sampling (IS) and then samples other parameters with Markov chain Monte Carlo (MCMC). It is then possible to more easily utilize the advantages of importance sampling in a fully Bayesian framework. The method is applied to the problem of estimating recent changes in effective population size from temporally spaced gene frequency data. The method gives the posterior distribution of effective population size at the time of the oldest sample and at the time of the most recent sample, assuming a model of exponential growth or decline during the interval. The effect of changes in number of alleles, number of loci, and sample size on the accuracy of the method is described using test simulations, and it is concluded that these have an approximately equivalent effect. The method is used on three example data sets and problems in interpreting the posterior densities are highlighted and discussed.
Resumo:
Analyses of high-density single-nucleotide polymorphism (SNP) data, such as genetic mapping and linkage disequilibrium (LD) studies, require phase-known haplotypes to allow for the correlation between tightly linked loci. However, current SNP genotyping technology cannot determine phase, which must be inferred statistically. In this paper, we present a new Bayesian Markov chain Monte Carlo (MCMC) algorithm for population haplotype frequency estimation, particulary in the context of LD assessment. The novel feature of the method is the incorporation of a log-linear prior model for population haplotype frequencies. We present simulations to suggest that 1) the log-linear prior model is more appropriate than the standard coalescent process in the presence of recombination (>0.02cM between adjacent loci), and 2) there is substantial inflation in measures of LD obtained by a "two-stage" approach to the analysis by treating the "best" haplotype configuration as correct, without regard to uncertainty in the recombination process. Genet Epidemiol 25:106-114, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
The hybrid Monte Carlo (HMC) method is a popular and rigorous method for sampling from a canonical ensemble. The HMC method is based on classical molecular dynamics simulations combined with a Metropolis acceptance criterion and a momentum resampling step. While the HMC method completely resamples the momentum after each Monte Carlo step, the generalized hybrid Monte Carlo (GHMC) method can be implemented with a partial momentum refreshment step. This property seems desirable for keeping some of the dynamic information throughout the sampling process similar to stochastic Langevin and Brownian dynamics simulations. It is, however, ultimate to the success of the GHMC method that the rejection rate in the molecular dynamics part is kept at a minimum. Otherwise an undesirable Zitterbewegung in the Monte Carlo samples is observed. In this paper, we describe a method to achieve very low rejection rates by using a modified energy, which is preserved to high-order along molecular dynamics trajectories. The modified energy is based on backward error results for symplectic time-stepping methods. The proposed generalized shadow hybrid Monte Carlo (GSHMC) method is applicable to NVT as well as NPT ensemble simulations.
Resumo:
Runoff generation processes and pathways vary widely between catchments. Credible simulations of solute and pollutant transport in surface waters are dependent on models which facilitate appropriate, catchment-specific representations of perceptual models of the runoff generation process. Here, we present a flexible, semi-distributed landscape-scale rainfall-runoff modelling toolkit suitable for simulating a broad range of user-specified perceptual models of runoff generation and stream flow occurring in different climatic regions and landscape types. PERSiST (the Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport) is designed for simulating present-day hydrology; projecting possible future effects of climate or land use change on runoff and catchment water storage; and generating hydrologic inputs for the Integrated Catchments (INCA) family of models. PERSiST has limited data requirements and is calibrated using observed time series of precipitation, air temperature and runoff at one or more points in a river network. Here, we apply PERSiST to the river Thames in the UK and describe a Monte Carlo tool for model calibration, sensitivity and uncertainty analysis