971 resultados para Monotone Approximation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic and magnetic structures of the LaMnO3 compound have been studied by means of periodic calculations within the framework of spin polarized hybrid density-functional theory. In order to quantify the role of approximations to electronic exchange and correlation three different hybrid functionals have been used which mix nonlocal Fock and local Dirac-Slater exchange. Periodic Hartree-Fock results are also reported for comparative purposes. The A-antiferromagnetic ground state is properly predicted by all methods including Hartree-Fock exchange. In general, the different hybrid methods provide a rather accurate description of the band gap and of the two magnetic coupling constants, strongly suggesting that the corresponding description of the electronic structure is also accurate. An important conclusion emerging from this study is that the nature of the occupied states near the Fermi level is intermediate between the Hartree-Fock and local density approximation descriptions with a comparable participation of both Mn and O states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ab initio periodic unrestricted Hartree-Fock method has been applied in the investigation of the ground-state structural, electronic, and magnetic properties of the rutile-type compounds MF2 (M=Mn, Fe, Co, and Ni). All electron Gaussian basis sets have been used. The systems turn out to be large band-gap antiferromagnetic insulators; the optimized geometrical parameters are in good agreement with experiment. The calculated most stable electronic state shows an antiferromagnetic order in agreement with that resulting from neutron scattering experiments. The magnetic coupling constants between nearest-neighbor magnetic ions along the [001], [111], and [100] (or [010]) directions have been calculated using several supercells. The resulting ab initio magnetic coupling constants are reasonably satisfactory when compared with available experimental data. The importance of the Jahn-Teller effect in FeF2 and CoF2 is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hybrid theory which combines the full nonlocal ¿exact¿ exchange interaction with the local spin-density approximation of density-functional theory is shown to lead to marked improvement in the description of antiferromagnetically coupled systems. Semiquantitative agreement with experiment is found for the magnitude of the coupling constant in La2CuO4, KNiF3, and K2NiF4. The magnitude of the unpaired spin population on the metal site is in excellent agreement with experiment for La2CuO4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An Actively Heated Fiber Optics (AHFO) method to estimate soil moisture is tested and the analysis technique improved on. The measurements were performed in a lysimeter uniformly packed with loam soil with variable water content profiles. In the first meter of the soil profi le, 30 m of fiber optic cable were installed in a 12 loops coil. The metal sheath armoring the fiber cable was used as an electrical resistance heater to generate a heat pulse, and the soil response was monitored with a Distributed Temperature Sensing (DTS) system. We study the cooling following three continuous heat pulses of 120 s at 36 W m(-1) by means of long-time approximation of radial heat conduction. The soil volumetric water contents were then inferred from the estimated thermal conductivities through a specifically calibrated model relating thermal conductivity and volumetric water content. To use the pre-asymptotic data we employed a time correction that allowed the volumetric water content to be estimated with a precision of 0.01-0.035 (m(3) m(-3)). A comparison of the AHFO measurements with soil-moisture measurements obtained with calibrated capacitance-based probes gave good agreement for wetter soils [discrepancy between the two methods was less than 0.04 (m(3) m(-3))]. In the shallow drier soils, the AHFO method underestimated the volumetric water content due to the longertime required for the temperature increment to become asymptotic in less thermally conductive media [discrepancy between the two methods was larger than 0.1 (m(3) m(-3))]. The present work suggests that future applications of the AHFO method should include longer heat pulses, that longer heating and cooling events are analyzed, and, temperature increments ideally be measured with higher frequency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The objective of this study was to investigate the effects of weather, rank, and home advantage on international football match results and scores in the Gulf Cooperation Council (GCC) region. METHODS: Football matches (n = 2008) in six GCC countries were analyzed. To determine the weather influence on the likelihood of favorable outcome and goal difference, generalized linear model with a logit link function and multiple regression analysis were performed. RESULTS: In the GCC region, home teams tend to have greater likelihood of a favorable outcome (P < 0.001) and higher goal difference (P < 0.001). Temperature difference was identified as a significant explanatory variable when used independently (P < 0.001) or after adjustment for home advantage and team ranking (P < 0.001). The likelihood of favorable outcome for GCC teams increases by 3% for every 1-unit increase in temperature difference. After inclusion of interaction with opposition, this advantage remains significant only when playing against non-GCC opponents. While home advantage increased the odds of favorable outcome (P < 0.001) and goal difference (P < 0.001) after inclusion of interaction term, the likelihood of favorable outcome for a GCC team decreased (P < 0.001) when playing against a stronger opponent. Finally, the temperature and wet bulb globe temperature approximation were found as better indicators of the effect of environmental conditions than absolute and relative humidity or heat index on match outcomes. CONCLUSIONS: In GCC region, higher temperature increased the likelihood of a favorable outcome when playing against non-GCC teams. However, international ranking should be considered because an opponent with a higher rank reduced, but did not eliminate, the likelihood of a favorable outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple holographic model is presented and analyzed that describes chiral symmetry breaking and the physics of the meson sector in QCD. This is a bottom-up model that incorporates string theory ingredients like tachyon condensation which is expected to be the main manifestation of chiral symmetry breaking in the holographic context. As a model for glue the Kuperstein-Sonnenschein background is used. The structure of the flavor vacuum is analyzed in the quenched approximation. Chiral symmetry breaking is shown at zero temperature. Above the deconfinement transition chiral symmetry is restored. A complete holographic renormalization is performed and the chiral condensate is calculated for different quark masses both at zero and non-zero temperatures. The 0++, 0¿+, 1++, 1¿¿ meson trajectories are analyzed and their masses and decay constants are computed. The asymptotic trajectories are linear. The model has one phenomenological parameter beyond those of QCD that affects the 1++, 0¿+ sectors. Fitting this parameter we obtain very good agreement with data. The model improves in several ways the popular hard-wall and soft wall bottom-up models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nationally, there are questions regarding the design, fabrication, and erection of horizontally curved steel girder bridges due to unpredicted girder displacements, fit-up, and locked-in stresses. One reason for the concerns is that up to one-quarter of steel girder bridges are being designed with horizontal curvature. There is also an urgent need to reduce bridge maintenance costs by eliminating or reducing deck joints, which can be achieved by expanding the use of integral abutments to include curved girder bridges. However, the behavior of horizontally curved bridges with integral abutments during thermal loading is not well known nor understood. The purpose of this study was to investigate the behavior of horizontal curved bridges with integral abutment (IAB) and semi-integral abutment bridges (SIAB) with a specific interest in the response to changing temperatures. The long-term objective of this effort is to establish guidelines for the use of integral abutments with curved girder bridges. The primary objective of this work was to monitor and evaluate the behavior of six in-service, horizontally curved, steel-girder bridges with integral and semi-integral abutments. In addition, the influence of bridge curvature, skew and pier bearing (expansion and fixed) were also part of the study. Two monitoring systems were designed and applied to a set of four horizontally curved bridges and two straight bridges at the northeast corner of Des Moines, Iowa—one system for measuring strains and movement under long term thermal changes and one system for measuring the behavior under short term, controlled live loading. A finite element model was developed and validated against the measured strains. The model was then used to investigate the sensitivity of design calculations to curvature, skew and pier joint conditions. The general conclusions were as follows: (1) There were no measurable differences in the behavior of the horizontally curved bridges and straight bridges studied in this work under thermal effects. For preliminary member sizing of curved bridges, thermal stresses and movements in a straight bridge of the same length are a reasonable first approximation. (2) Thermal strains in integral abutment and semi-integral abutment bridges were not noticeably different. The choice between IAB and SIAB should be based on life – cycle costs (e.g., construction and maintenance). (3) An expansion bearing pier reduces the thermal stresses in the girders of the straight bridge but does not appear to reduce the stresses in the girders of the curved bridge. (4) An analysis of the bridges predicted a substantial total stress (sum of the vertical bending stress, the lateral bending stress, and the axial stress) up to 3 ksi due to temperature effects. (5) For the one curved integral abutment bridge studied at length, the stresses in the girders significantly vary with changes in skew and curvature. With a 10⁰ skew and 0.06 radians arc span length to radius ratio, the curved and skew integral abutment bridges can be designed as a straight bridge if an error in estimation of the stresses of 10% is acceptable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La présente recherche analyse le concept mental d'identité personnelle et en propose une interprétation critique, qui se développe à partir des cas de troubles psychologiques se manifestant chez certains patients transplantés. Nous pensons que l'étude de ces cas offre la possibilité de repenser, et par là critiquer, certains présupposés qui conditionnent le débat philosophique contemporain sur l'identité personnelle de matrice essentiellement analytique. Nous proposons de ce concept mental une interprétation inusuelle, reposant sur une certaine compréhension de l'être (humain), que nous caractérisons par la formule «identité personnelle transductive ». Cette expression véhicule l'idée d'une «ontologie autre » ; autre que l'ontologie classique qui pense l'être comme déterminité, à l'instar d'un individu substantiel, stable et persistant. Nous nous éloignons ainsi de la conception de la déterminité telle qu'elle se développe depuis l'Antiquité grecque, parce que nous croyons que le changement ou le devenir réside dans la nature des choses. Nous avons ainsi essayé de présenter une interprétation de l'être différente, en empruntant à Gilbert Simondon la notion de « transductivité » -dans le sens d'« individuation en progrès »que cet auteur lui attribue. En comparant les témoignages des patients transplantés avec les cas imaginaires de transplantation de cerveau qui dominent les discussions philosophiques, nous avons montré la nécessité de refonder l'ontologie sur laquelle reposent les théories contemporaines de l'identité personnelle. Cette tentative répond à l'exigence de résoudre et tempérer les apories qui se font jour au sein des conceptions déterministes de la personne -soient-elles réductionnistes (à l'instar des partisans du critère de continuité psychologique et physique) ou non réductionnistes (à l'instar des conceptions simples ou Théories de l'ego basées sur une approche à la première personne, où la personne, comprise comme persistance substantielle d'un sujet, se fonde d'elle-même). Au coeur de notre démarche se trouve la notion d'« image du corps », véritable outil d'unification épistémologique et de renouvellement ontologique. Cette notion s'est révélée extrêmement utile non seulement pour comprendre et démêler les composantes qui interviennent dans le surgissement des troubles psychologiques lors des transplantations d'organes, ainsi que la variabilité des réactions individuelles, mais aussi, plus fondamentalement, pour rendre manifeste l'opération de «transduction perpétuée »qui est à la base de l'ontogenèse de l'être humain en tant que personne, donc du moi. La notion d'image du corps nous a donc permis de mettre en évidence ce que l'expérience de la transplantation d'organes bien comprise pourrait ou devrait apporter à la théorie de l'identité personnelle. C'est ainsi que, par approximation, s'est précisée l'idée d'une identité personnelle transductive, où le moi (la personne), étant interprété comme l'aspect subjectif d'une opération d'«individuation perpétuée », se donne sous le signe de la discordance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a combined shape and mechanical anisotropy evolution model for a two-phase inclusion-bearing rock subject to large deformation. A single elliptical inclusion embedded in a homogeneous but anisotropic matrix is used to represent a simplified shape evolution enforced on all inclusions. The mechanical anisotropy develops due to the alignment of elongated inclusions. The effective anisotropy is quantified using the differential effective medium (DEM) approach. The model can be run for any deformation path and an arbitrary viscosity ratio between the inclusion and host phase. We focus on the case of simple shear and weak inclusions. The shape evolution of the representative inclusion is largely insensitive to the anisotropy development and to parameter variations in the studied range. An initial hardening stage is observed up to a shear strain of gamma = 1 irrespective of the inclusion fraction. The hardening is followed by a softening stage related to the developing anisotropy and its progressive rotation toward the shear direction. The traction needed to maintain a constant shear rate exhibits a fivefold drop at gamma = 5 in the limiting case of an inviscid inclusion. Numerical simulations show that our analytical model provides a good approximation to the actual evolution of a two-phase inclusion-host composite. However, the inclusions develop complex sigmoidal shapes resulting in the formation of an S-C fabric. We attribute the observed drop in the effective normal viscosity to this structural development. We study the localization potential in a rock column bearing varying fraction of inclusions. In the inviscid inclusion case, a strain jump from gamma = 3 to gamma = 100 is observed for a change of the inclusion fraction from 20% to 33%.