964 resultados para Monoclonal antibodies
Resumo:
Chromoblastomycosis (CBM) is a chronic subcutaneous infection caused by several dematiaceous fungi. The most commonly etiological agent found in Brazil is Fonsecaea pedrosoi, which appears as thick walled, brownish colored cells with transverse and longitudinal division in the lesions, called "muriform cells". This disease is found worldwide but countries like Madagascar and Brazil have highest incidence. Diagnosis is made by clinical, direct and histopathologic examination and culture of specimens. Serological tests have been used to identify specific antibodies against Fonsecaea pedrosoi antigens, as well as immunotechniques have been used for CBM serological identification and diagnosis. In the present study double immunodiffusion (DID), counterimmunoelectrophoresis (CIE) and immunoenzymatic test (ELISA) have been used to evaluate humoral immune response in patients with CBM caused by F. pedrosoi. Metabolic antigen was used for immunoprecipitation tests (DID and CIE) while somatic antigen for ELISA. Our results demonstrated 53% sensitivity and 96% specificity for DID, while CIE presented 68% sensitivity and 90.5% specificity. ELISA demonstrated 78% sensibility and 83% specificity. Serological tests can be a useful tool to study different aspects of CBM, such as helping differential diagnosis, when culture of the pathogenic agent is impossible.
Resumo:
A rapid test based on an immunochromatography assay - Determine Syphilis TP (Abbott Lab.) for detecting specific antibodies to Treponema pallidum was evaluated against serum samples from patients with clinical, epidemiological and serological diagnosis of syphilis, patients with sexually transmitted disease other than syphilis, and individuals with negative serology for syphilis. The Determine test presented the sensitivity of 93.6%, specificity of 92.5%, and positive predictive value and negative predictive value of 95.2% and 93.7%, respectively. One serum sample from patient with recent latent syphilis showed a prozone reaction. Determine is a rapid assay, highly specific and easy to perform. This technique obviates the need of equipment and its diagnostic features demonstrate that it may be applicable as an alternative assay for syphilis screening under some emergency conditions or for patients living in remote localities.
Resumo:
A novel artificial antibody for troponin T (TnT) was synthesized by molecular imprint (MI) on the surface of multiwalled carbon nanotubes (MWCNT). This was done by attaching TnT to the MWCNT surface, and filling the vacant spaces by polymerizing under mild conditions acrylamide (monomer) in N,N′-methylenebisacrylamide (cross-linker) and ammonium persulphate (initiator). After removing the template, the obtained biomaterial was able to rebind TnT and discriminate it among other interfering species. Stereochemical recognition of TnT was confirmed by the non-rebinding ability displayed by non-imprinted (NI) materials, obtained by imprinting without a template. SEM and FTIR analysis confirmed the surface modification of the MWCNT. The ability of this biomaterial to rebind TnT was confirmed by including it as electroactive compound in a PVC/plasticizer mixture coating a wire of silver, gold or titanium. Anionic slopes of 50 mV decade−1 were obtained for the gold wire coated with MI-based membranes dipped in HEPES buffer of pH 7. The limit of detection was 0.16 μg mL−1. Neither the NI-MWCNT nor the MWCNT showed the ability to recognize the template. Good selectivity was observed against creatinine, sucrose, fructose, myoglobin, sodium glutamate, thiamine and urea. The sensor was tested successfully on serum samples. It is expected that this work opens new horizons on the design of new artificial antibodies for complex protein structures.
Resumo:
Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol–gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about −58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes −54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters.