993 resultados para Modeling Languages
Resumo:
This paper is aimed at enabling the confident use of existing model test facilities for ultra deepwater application without having to compromise on the widely accepted range of scales currently used by the floating production industry. Passive line truncation has traditionally been the preferred method of creating an equivalent numerical model at reduced depth; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. The upper sections of each line are modeled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model that aims to simulate the remainder of the line. Stages 1 & 2 are used to derive a water depth truncation ratio. Here vibration decay of transverse elastic waves is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Stage 3 endeavors to match the individual line stiffness between the full depth and truncated models. In deepwater it is likely that taut polyester moorings will be used which are predominantly straight and have high axial stiffness that provides the principal restoring force to static and low frequency vessel motions. Consequently, it means that the natural frequencies of axial vibrations are above the typical wave frequency range allowing for a quasi-static solution. In cases of exceptionally large wave frequency vessel motions, localized curvature at the chain seabed segment and tangential skin drag on the polyester rope can increase dynamic peak tensions considerably. The focus of this paper is to develop an efficient scheme based on analytic formulation, for replicating these forces at the truncation. The paper will close with an example case study of a single mooring under extreme conditions that replicates exactly the static and dynamic characteristics of the full depth line. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
Computational fluid dynamics (CFD) simulations are becoming increasingly widespread with the advent of more powerful computers and more sophisticated software. The aim of these developments is to facilitate more accurate reactor design and optimization methods compared to traditional lumped-parameter models. However, in order for CFD to be a trusted method, it must be validated using experimental data acquired at sufficiently high spatial resolution. This article validates an in-house CFD code by comparison with flow-field data obtained using magnetic resonance imaging (MRI) for a packed bed with a particle-to-column diameter ratio of 2. Flows characterized by inlet Reynolds numbers, based on particle diameter, of 27, 55, 111, and 216 are considered. The code used employs preconditioning to directly solve for pressure in low-velocity flow regimes. Excellent agreement was found between the MRI and CFD data with relative error between the experimentally determined and numerically predicted flow-fields being in the range of 3-9%. © 2012 American Institute of Chemical Engineers (AIChE).
Resumo:
Analyses of crack growth under cyclic loading conditions are discussed where plastic flow arises from the motion of large numbers of discrete dislocations and the fracture properties are embedded in a cohesive surface constitutive relation. The formulation is the same as used to analyse crack growth under monotonic loading conditions, differing only in the remote loading being a cyclic function of time. Fatigue, i.e. crack growth in cyclic loading at a driving force for which the crack would have arrested under monotonic loading, emerges in the simulations as a consequence of the evolution of internal stresses associated with the irreversibility of the dislocation motion. A fatigue threshold, Paris law behaviour, striations, the accelerated growth of short cracks and the scaling with material properties are outcomes of the calculations. Results for single crystals and polycrystals will be discussed.
Resumo:
A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-T c superconducting (HTS) system. The model is characterized by the E-J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.
Resumo:
This paper presents the steps and the challenges for implementing analytical, physics-based models for the insulated gate bipolar transistor (IGBT) and the PIN diode in hardware and more specifically in field programmable gate arrays (FPGAs). The models can be utilised in hardware co-simulation of complex power electronic converters and entire power systems in order to reduce the simulation time without compromising the accuracy of results. Such a co-simulation allows reliable prediction of the system's performance as well as accurate investigation of the power devices' behaviour during operation. Ultimately, this will allow application-specific optimisation of the devices' structure, circuit topologies as well as enhancement of the control and/or protection schemes.
Resumo:
This paper proposes a magnetic circuit model (MCM) for the design of a brushless doubly-fed machine (BDFM). The BDFM possesses advantages in terms of high reliability and reduced gearbox stages, and it requires a fractionally-rated power converter. This makes it suitable for utilization in offshore wind turbines. It is difficult for conventional design methods to calculate the flux in the stator because the two sets of stator windings, which have different pole number, form a complex flux pattern which is not easily determined using common analytical approaches. However, it is advantageous to predict the flux density in the teeth and air-gap at the initial design stage for sizing purposes without recourse finite element analysis. Therefore a magnetic circuit model is developed in this paper to calculate the flux density. A BDFM is used as a case study with FEA validation. © 1965-2012 IEEE.
Resumo:
Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil–structure interaction mechanisms. The significance of these observations is discussed.
Resumo:
The cost of large-eddy simulation (LES) modeling in various zones of gas turbine aeroengines is outlined. This high cost clearly demonstrates the need to perform hybrid Reynolds-averaged Navier-Stokes-LES (RANS-LES) over the majority of engine zones because the Reynolds number is too high for pure LES. The RANS layer is used to cover over the fine streaks found in the inner part of the boundary layer. The hybrid strategy is applied to various engine zones, which is shown to typically give much greater predictive accuracy than pure RANS simulations. However, the cost estimates show that the RANS layer should be disposed within the low-pressure turbine zone. Also, the nature of the flow physics in this zone makes LES most sensible. © 2012 by Begell House, Inc.
Resumo:
Hybrid methods based on the Reynolds Averaged Navier Stokes (RANS) equations and the Large Eddy Simulation (LES) formulation are investigated to try and improve the accuracy of heat transfer and surface temperature predictions for electronics systems and components. Two relatively low Reynolds number flows are studied using hybrid RANS-LES, RANS-Implicit-LES (RANS-ILES) and non-linear LES models. Predictions using these methods are in good agreement with each other, even using different grid resolutions. © 2008 IEEE.