971 resultados para Mdpc-23 cells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plugs or containerized plants can offer several advantages over traditional bare-rooted runner plants for strawberry (Fragaria x ananassa) production. Some of these benefits include easier planting, better establishment, fewer pests and diseases, and lower water use during plant establishment resulting in less leaching of applied fertilizers. Plugs also offer the potential for mechanical planting. In some areas of Europe and North America, plugs provide earlier production, greater productivity and larger fruit than runners. Research has also shown that the plants can be grown under short days and low temperatures to manipulate flower initiation and fruiting. Plugs are more expensive to buy compared with runner plants, and will only be adopted by industry if the extra costs are matched by convenience, resource conservation, increased fruiting and returns to producers. We investigated the productivity of 'Festival' and 'Sugarbaby' propagated as plugs (75 cm3 containers) and runners from Stanthorpe in southern Queensland (elevation of 872 m), and grown at Nambour on the Sunshine Coast (elevation 29 m). At planting, the plug plants weighed 0.8 ± 0.1 g DW compared with 53 ± 0.5 g DW for the runner plants. 'Sugarbaby' plugs were larger than 'Festival' plugs (33 ± 0.6 g versus 2.9 ± 0.6 g). The differences in growth at planting were maintained until the third week of July (day 94), with the plug plants weighing 17.8 ± 2.2 g, and the runner plants 21.4 ± 23 g. The proportion of plant dry matter allocated to the leaves increased over time from 59 to 70%, while the proportion allocated to the roots decreased from 21 to 10%. Harvest commenced after 60 days, with the plug plants yielding only 60% of the yields of the runner plants up until 8 August or day 109 (14.2 ± 1.4 g plant -1 week-1 versus 23.6 ± 1.9 g plant-1 week-1). 'Festival' (22.2 ± 2.0 g plant-1 week -1) had higher yields than 'Sugarbaby' (15.5 ± 1.5 g plant-1 week-1), even though plants of the latter were larger. Average fruit weight was 15.6 ± 0.3 g, with no effect of cultivar, plant type or harvest time. In other words, the differences in yield between the various treatments were due to differences in fruit set The lower yields of the plug plants probably reflect their small size at planting. Future research should determine whether plugs grown in larger cells (150 to 300 cm3 as in the USA and Europe) are more productive. Tips to be grown in larger containers should be harvested earlier than those for small cells to maximize root growth of the plug plant. This will probably extend the time required from harvest of the tips and potting them from the current four to five weeks, to eight to ten weeks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the structure activity relationship (SAR) on the cytotoxic activity and probe the structural requirement for the potent antitumor activity, a series of novel diazaspiro bicyclo hydantoin derivatives were designed and synthesized. Their structures were confirmed by H-1 NMR, LCMS and IR analyses. The antiproliferative effect of these compounds were determined against human leukemia, K562 (chronic myelogenous leukemia) and CEM (T-cell leukemia) cells using trypan blue and MTT assay, and the SAR associated with the position of N-terminal substituents in diazaspiro bicyclo hydantoin have also been discussed. It has been observed that these compounds displayed strong, moderate and weak cytotoxic activities. Interestingly, compounds having electron withdrawing groups at third and fourth position of the phenyl ring displayed selectively cytotoxic activities to both the cell lines tested with IC50 value lower than 50 mu M. In addition, the cytotoxic activities of the compounds 7(a-o) bearing the substituents at N-3 position of diazaspiro bicyclo hydantoin increases in the order alkene > ester > ether and plays an important role in determining their antitumor activities. The position and number of substituents in benzyl group attached to N-8 of diazaspiro bicyclo hydantoin nucleus interacted selectively with specific targets leading to the difference of biochemical and pharmacological effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Augmentation of hexosamine biosynthetic pathway (HBP) and endoplasmic reticulum (ER) stress were independently related to be the underlying causes of insulin resistance. We hypothesized that there might be a molecular convergence of activated HBP and ER stress pathways leading to insulin resistance. Augmentation of HBP in L6 skeletal muscle cells either by pharmacological (glucosamine) or physiological (high-glucose) means, resulted in increased protein expression of ER chaperones (viz., Grp78, Calreticulin, and Calnexin), UDP-GlcNAc levels and impaired insulin-stimulated glucose uptake. Cells silenced for O-glycosyl transferase (OGT) showed improved insulin-stimulated glucose uptake (P < 0.05) but without any effect on ER chaperone upregulation. While cells treated with either glucosamine or high-glucose exhibited increased JNK activity, silencing of OGT resulted in inhibition of JNK and normalization of glucose uptake. Our study for the first time, demonstrates a molecular convergence of O-glycosylation processes and ER stress signals at the cross-road of insulin resistance in skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C-4 plants for the production of poly[(R)-3-hydroxybutyrate] (PHB) is the significantly lower level of polymer produced in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells, thereby limiting the full PHB yield-potential of the plant. In this study, we provide evidence that the access to substrate for PHB synthesis may limit polymer production in M chloroplasts. Production of PHB in M cells of sugarcane is significantly increased by replacing -ketothiolase, the first enzyme in the bacterial PHA pathway, with acetoacetyl-CoA synthase. This novel pathway enabled the production of PHB reaching an average of 6.3% of the dry weight of total leaf biomass, with levels ranging from 3.6 to 11.8% of the dry weight (DW) of individual leaves. These yields are more than twice the level reported in PHB-producing sugarcane containing the -ketothiolase and illustrate the importance of producing polymer in mesophyll plastids to maximize yield. The molecular weight of the polymer produced was greater than 2x10(6)Da. These results are a major step forward in engineering a high biomass C-4 grass for the commercial production of PHB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n recent years, fuel cell technology has advanced significantly. Field trials on certain types of fuel cells have shown promise for electrical use. This article reviews the electrochemistry, problems and prospects of fuel cell systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In epithelial-mesenchymal transition (EMT), epithelial cells acquire traits typical for mesenchymal cells, dissociate their cell-cell junctions and gain the ability to migrate. EMT is essential during embryogenesis, but may also mediate cancer progression. Basement membranes are sheets of extracellular matrix that support epithelial cells. They have a major role in maintaining the epithelial phenotype and, in cancer, preventing cell migration, invasion and metastasis. Laminins are the main components of basement membranes and may actively contribute to malignancy. We first evaluated the differences between cell lines obtained from oral squamous cell carcinoma and its recurrence. As the results indicated a change from epithelial to fibroblastoid morphology, E-cadherin to N-cadherin switch, and change in expression of cytokeratins to vimentin intermediate filaments, we concluded that these cells had undergone EMT. We further induced EMT in primary tumour cells to gain knowledge of the effects of transcription factor Snail in this cell model. The E-cadherin repressors responsible for the EMT in these cells were ZEB-1, ZEB-2 and Snail, and ectopic expression of Snail was able to augment the levels of ZEB-1 and ZEB-2. We produced and characterized two monoclonal antibodies that specifically recognized Snail in cell lines and patient samples. By immunohistochemistry, Snail protein was found in mesenchymal tissues during mouse embryonal development, in fibroblastoid cells of healing skin wounds and in fibromatosis and sarcoma specimens. Furthermore, Snail localized to the stroma and borders of tumour cell islands in colon adenocarcinoma, and in laryngeal and cervical squamous cell carcinomas. Immunofluorescence labellings, immunoprecipitations and Northern and Western blots showed that EMT induced a progressive downregulation of laminin-332 and laminin-511 and, on the other hand, an induction of mesenchymal laminin-411. Chromatin immunoprecipitation revealed that Snail could directly bind upstream to the transcription start sites of both laminin α5 and α4 chain genes, thus regulating their expression. The levels of integrin α6β4, a receptor for laminin-332, as well as the hemidesmosomal complex proteins HD1/plectin and BP180 were downregulated in EMT-experienced cells. The expression of Lutheran glycoprotein, a specific receptor for laminin-511, was diminished, whereas the levels of integrins α6β1 and α1β1 and integrin-linked kinase were increased. In quantitative cell adhesion assays, the cells adhered potently to laminin-511 and fibronectin, but only marginally to laminin-411. Western blots and immunoprecipitations indicated that laminin-411 bound to fibronectin and could compromise cell adhesion to fibronectin in a dose-dependent manner. EMT induced a highly migratory and invasive tendency in oral squamous carcinoma cells. Actin-based adhesion and invasion structures, podosomes and invadopodia, were detected in the basal cell membranes of primary tumour and spontaneously transformed cancer cells, respectively. Immunofluorescence labellings showed marked differences in their morphology, as podosomes organized a ring structure with HD1/plectin, αII-spectrin, talin, focal adhesion kinase and pacsin 2 around the core filled with actin, cortactin, vinculin and filamin A. Invadopodia had no division between ring and core and failed to organize the ring proteins, but instead assembled tail-like, narrow actin cables that showed a talin-tensin switch. Time-lapse live-cell imaging indicated that both podosomes and invadopodia were long-lived entities, but the tails of invadopodia vigorously propelled in the cytoplasm and were occasionally released from the cell membrane. Invadopodia could also be externalized outside the cytoplasm, where they still retained the ability to degrade matrix. In 3D confocal imaging combined with in situ gelatin zymography, the podosomes of primary tumour cells were large, cylindrical structures that increased in time, whereas the invadopodia in EMT-driven cells were smaller, but more numerous and degraded the underlying matrix in significantly larger amounts. Fluorescence recovery after photobleaching revealed that the substructures of podosomes were replenished more rapidly with new molecules than those of invadopodia. Overall, our results indicate that EMT has a major effect on the transcription and synthesis of both intra- and extracellular proteins, including laminins and their receptors, and on the structure and dynamics of oral squamous carcinoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Androgen receptor (AR) is necessary for normal male phenotype development and essential for spermatogenesis. AR is a classical steroid receptor mediating actions of male sex steroids testosterone and 5-alpha-dihydrotestosterone. Numerous coregulators interact with the receptor and regulate AR activity on target genes. This study deals with the characterization of androgen receptor-interacting protein 4 (ARIP4). ARIP4 binds DNA, interacts with AR in vitro and in cultured yeast and mammalian cells, and modulates AR-dependent transactivation. ARIP4 is an active DNA-dependent ATPase, and this enzymatic activity is essential for the ability of ARIP4 to modulate AR function. On the basis of sequence homology in its ATPase domain, ARIP4 belongs to the SNF2 family of proteins involved in chromatin remodeling, DNA repair, and homologous recombination. Similar to its closest homologs ATRX and Rad54, ARIP4 does not seem to be a classical chromatin remodeling protein in that it does not appear to form large protein complexes in vivo or remodel mononucleosomes in vitro. However, ARIP4 is able to generate superhelical torsion on linear DNA fragments. ARIP4 is covalently modified by SUMO-1, and mutation of six potential SUMO attachment sites abolishes the ability of ARIP4 to bind DNA, hydrolyze ATP, and activate AR function. ARIP4 expression starts in early embryonic development. In mouse embryo ARIP4 is present mainly in the neural tube and limb buds. In adult mouse tissues ARIP4 expression is virtually ubiquitous. In mouse testis ARIP4 is expressed in the nuclei of Sertoli cells in a stage-dependent manner. ARIP4 is also present in the nuclei of Leydig cells, spermatogonia, pachytene and diplotene spermatocytes. Testicular expression pattern of ARIP4 does not differ significantly in wild-type, FSHRKO, and LuRKO mice. In the testis of hpg mice, ARIP4 is found mainly in interstitial cells and has very low, if any, expression in Sertoli and germ cells. Heterozygous Arip4+/ mice are fertile and appear normal; however, they are haploinsufficient with regard to androgen action in Sertoli cells. In contrast, Arip4 / embryos are not viable. They have significantly reduced body size at E9.5 and die by E11.5. Compared to wild-type littermates, Arip4 / embryos possess a higher percentage of apoptotic cells at E9.5 and E10.5. Fibroblasts derived from Arip4 / embryos cease growing after 2-3 passages and exhibit a significantly increased apoptosis and decreased proliferation rate than cells from wild-type embryos. Our findings demonstrate that ARIP4 plays an essential role in mouse embryonic development. In addition, testicular expression and AR coregulatory activity of ARIP4 suggest a role of ARIP4-AR interaction in the somatic cells of the testis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and deformed shapes, when flowing through these capillaries with diameters varying between 5 10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the RBCs directly influences on the motion and the deformation of the RBCs. However, most of the previous numerical studies have explored the motion and deformation of a single RBC when the interaction between RBCs has been neglected. In this study, motion and deformation of two 2D (two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly model the interactions between RBCs, only two RBCs are considered in this study even though blood with RBCs is continuously flowing through the blood vessels. A spring network based on the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction between RBCs has significant influence on their motion and deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions.