971 resultados para Marangoni Convection


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Convectively coupled equatorial waves are fundamental components of the interaction between the physics and dynamics of the tropical atmosphere. A new methodology, which isolates individual equatorial wave modes, has been developed and applied to observational data. The methodology assumes that the horizontal structures given by equatorial wave theory can be used to project upper- and lower-tropospheric data onto equatorial wave modes. The dynamical fields are first separated into eastward- and westward-moving components with a specified domain of frequency–zonal wavenumber. Each of the components for each field is then projected onto the different equatorial modes using the y structures of these modes given by the theory. The latitudinal scale yo of the modes is predetermined by data to fit the equatorial trapping in a suitable latitude belt y = ±Y. The extent to which the different dynamical fields are consistent with one another in their depiction of each equatorial wave structure determines the confidence in the reality of that structure. Comparison of the analyzed modes with the eastward- and westward-moving components in the convection field enables the identification of the dynamical structure and nature of convectively coupled equatorial waves. In a case study, the methodology is applied to two independent data sources, ECMWF Reanalysis and satellite-observed window brightness temperature (Tb) data for the summer of 1992. Various convectively coupled equatorial Kelvin, mixed Rossby–gravity, and Rossby waves have been detected. The results indicate a robust consistency between the two independent data sources. Different vertical structures for different wave modes and a significant Doppler shifting effect of the background zonal winds on wave structures are found and discussed. It is found that in addition to low-level convergence, anomalous fluxes induced by strong equatorial zonal winds associated with equatorial waves are important for inducing equatorial convection. There is evidence that equatorial convection associated with Rossby waves leads to a change in structure involving a horizontal structure similar to that of a Kelvin wave moving westward with it. The vertical structure may also be radically changed. The analysis method should make a very powerful diagnostic tool for investigating convectively coupled equatorial waves and the interaction of equatorial dynamics and physics in the real atmosphere. The results from application of the analysis method for a reanalysis dataset should provide a benchmark against which model studies can be compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The banded organization of clouds and zonal winds in the atmospheres of the outer planets has long fascinated observers. Several recent studies in the theory and idealized modeling of geostrophic turbulence have suggested possible explanations for the emergence of such organized patterns, typically involving highly anisotropic exchanges of kinetic energy and vorticity within the dissipationless inertial ranges of turbulent flows dominated (at least at large scales) by ensembles of propagating Rossby waves. The results from an attempt to reproduce such conditions in the laboratory are presented here. Achievement of a distinct inertial range turns out to require an experiment on the largest feasible scale. Deep, rotating convection on small horizontal scales was induced by gently and continuously spraying dense, salty water onto the free surface of the 13-m-diameter cylindrical tank on the Coriolis platform in Grenoble, France. A “planetary vorticity gradient” or “β effect” was obtained by use of a conically sloping bottom and the whole tank rotated at angular speeds up to 0.15 rad s−1. Over a period of several hours, a highly barotropic, zonally banded large-scale flow pattern was seen to emerge with up to 5–6 narrow, alternating, zonally aligned jets across the tank, indicating the development of an anisotropic field of geostrophic turbulence. Using particle image velocimetry (PIV) techniques, zonal jets are shown to have arisen from nonlinear interactions between barotropic eddies on a scale comparable to either a Rhines or “frictional” wavelength, which scales roughly as (β/Urms)−1/2. This resulted in an anisotropic kinetic energy spectrum with a significantly steeper slope with wavenumber k for the zonal flow than for the nonzonal eddies, which largely follows the classical Kolmogorov k−5/3 inertial range. Potential vorticity fields show evidence of Rossby wave breaking and the presence of a “hyperstaircase” with radius, indicating instantaneous flows that are supercritical with respect to the Rayleigh–Kuo instability criterion and in a state of “barotropic adjustment.” The implications of these results are discussed in light of zonal jets observed in planetary atmospheres and, most recently, in the terrestrial oceans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the use of bivariate 3d empirical orthogonal functions (EOFs) in characterising low frequency variability of the Atlantic thermohaline circulation (THC) in the Hadley Centre global climate model, HadCM3. We find that the leading two modes are well correlated with an index of the meridional overturning circulation (MOC) on decadal timescales, with the leading mode alone accounting for 54% of the decadal variance. Episodes of coherent oscillations in the sub-space of the leading EOFs are identified; these episodes are of great interest for the predictability of the THC, and could indicate the existence of different regimes of natural variability. The mechanism identified for the multi-decadal variability is an internal ocean mode, dominated by changes in convection in the Nordic Seas, which lead the changes in the MOC by a few years. Variations in salinity transports from the Arctic and from the North Atlantic are the main feedbacks which control the oscillation. This mode has a weak feedback onto the atmosphere and hence a surface climatic influence. Interestingly, some of these climate impacts lead the changes in the overturning. There are also similarities to observed multi-decadal climate variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A parametrization for ice supersaturation is introduced into the ECMWF Integrated Forecast System (IFS), compatible with the cloud scheme that allows partial cloud coverage. It is based on the simple, but often justifiable, diagnostic assumption that the ice nucleation and subsequent depositional growth time-scales are short compared to the model time step, thus supersaturation is only permitted in the clear-sky portion of the grid cell. Results from model integrations using the new scheme are presented, which is demonstrated to increase upper-tropospheric humidity, decrease high-level cloud cover and, to a much lesser extent, cloud ice amounts, all as expected from simple arguments. Evaluation of the relative distribution of supersaturated humidity amounts shows good agreement with the observed climatology derived from in situ aircraft observations. With the new scheme, the global distribution of frequency of occurrence of supersaturated regions compares well with remotely sensed microwave limb sounder (MLS) data, with the most marked errors of underprediction occurring in regions where the model is known to underpredict deep convection. Finally, it is also demonstrated that the new scheme leads to improved predictions of permanent contrail cloud over southern England, which indirectly implies upper-tropospheric humidity fields are better represented for this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Geostationary Earth Radiation Budget instrument on Meteosat-8, located over Africa, provides unprecedented temporal sampling (~17 minutes) of the broadband emitted thermal and reflected solar radiances. We analyse the diurnal cycle of the outgoing longwave radiation (OLR) fluxes derived from the thermal radiances for July 2006. Principal component (PC) analysis separates the signals of the surface temperature response to solar heating and of the development of convective clouds. The first two PCs explain most of the OLR variations: PC1 (surface heating) explains 82.3% of the total variance and PC2 (cloud development) explains 12.8% of the variance. Convection is initiated preferentially over mountainous regions and the cloud then advects downstream in the ambient flow. Diurnal variations are much weaker over the oceans, but a coherent signal over the Gulf of Guinea suggests that the cloudiness is modulated by the diurnally varying contrast between the Gulf and the adjacent land mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence on the summer flow over Asia of both the orographic and thermal forcing of the Tibetan Plateau is investigated using a sequence of idealised experiments with a global primitive equation model. The zonally averaged flow is prescribed and both realistic and idealised orography and heating are used. There is some similarity between the responses to the two forcings when applied separately. The upper tropospheric Tibetan anticyclone is predominantly forced by the heating but also weakly by the orography. Below this, both forcings tend to give air descending in an equatorward anticyclonic circulation down the isentropes to the west and rising in a similar poleward circulation to the east. However the heating-only response has a strong ascending southwesterly flow that is guided around the south and south-east of the orography when it is included. On the northern side, the westerly flow over the orography gives ascent on the upslope and descent on the downslope. It is found that heating over the Plateau leads to a potential vorticity (PV) minimum and that if it is sufficiently strong the flow is unstable, producing a quasi-biweekly oscillation. During this oscillation the Tibetan anticyclone changes between a single centre over the southwestern side of the Plateau and a split/double structure with centres over China and the Middle East. These characteristics are similar to observed variability in the region. Associated with this quasi-biweekly oscillation are significant variations in the strength of the ascent over the Plateau and the Rossby wave pattern over the North Pacific. The origin of the variability is instability associated with the zonally extended potential vorticity PV minimum on a θ-surface, as proposed by Hsu and Plumb (2000). This minimum is due to the tendency to reduce the PV above the heating over the Plateau and to advection by the consequent anticyclone of high PV around from the east and low PV to the west. The deep convection to the south and southeast of the Plateau tends to suppress the quasi-biweekly oscillation because the low PV produced above it acts to reduce the meridional PV gradient reversal. The occurrence of the oscillation depends on the relative magnitude of the heating in the two regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the tropical African and neighboring Atlantic region there is a strong contrast in the properties of deep convection between land and ocean. Here, satellite radar observations are used to produce a composite picture of the life cycle of convection in these two regions. Estimates of the broadband thermal flux from the geostationary Meteosat-8 satellite are used to identify and track organized convective systems over their life cycle. The evolution of the system size and vertical extent are used to define five life cycle stages (warm and cold developing, mature, cold and warm dissipating), providing the basis for the composite analysis of the system evolution. The tracked systems are matched to overpasses of the Tropical Rainfall Measuring Mission satellite, and a composite picture of the evolution of various radar and lightning characteristics is built up. The results suggest a fundamental difference in the convective life cycle between land and ocean. African storms evolve from convectively active systems with frequent lightning in their developing stages to more stratiform conditions as they dissipate. Over the Atlantic, the convective fraction remains essentially constant into the dissipating stages, and lightning occurrence peaks late in the life cycle. This behavior is consistent with differences in convective sustainability in land and ocean regions as proposed in previous studies. The area expansion rate during the developing stages of convection is used to provide an estimate of the intensity of convection. Reasonable correlations are found between this index and the convective system lifetime, size, and depth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T /U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss and test the potential usefulness of single-column models (SCMs) for the testing of stchastic physics schemes that have been proposed for use in general circulation models (GCMs). We argue that although single column tests cannot be definitive in exposing the full behaviour of a stochastic method in the full GCM, and although there are differences between SCM testing of deterministic and stochastic methods, nonetheless SCM testing remains a useful tool. It is necessary to consider an ensemble of SCM runs produced by the stochastic method. These can be usefully compared to deterministic ensembles describing initial condition uncertainty and also to combinations of these (with structural model changes) into poor man's ensembles. The proposed methodology is demonstrated using an SCM experiment recently developed by the GCSS community, simulating the transitions between active and suppressed periods of tropical convection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments are performed using an idealized version of an operational forecast model to determine the impact on banded frontal clouds of the strength of deformational forcing, low-level baroclinicity, and model representation of convection. Line convection is initiated along the front, and slantwise bands extend from the top of the line-convection elements into the cold air. This banding is attributed primarily to M adjustment. The cross-frontal spreading of the cold pool generated by the line convection leads to further triggering of upright convection in the cold air that feeds into these slantwise bands. Secondary low-level bands form later in the simulations; these are attributed to the release of conditional symmetric instability. Enhanced deformation strain leads to earlier onset of convection and more coherent line convection. A stronger cold pool is generated, but its speed is reduced relative to that seen in experiments with weaker deformational strain, because of inhibition by the strain field. Enhanced low-level baroclinicity leads to the generation of more inertial instability by line convection (for a given capping height of convection), and consequently greater strength of the slantwise circulations formed by M adjustment. These conclusions are based on experiments without a convective-parametrization scheme. Experiments using the standard or a modified scheme for this model demonstrate known problems with the use of this scheme at the awkward 4 km grid length used in these simulations. Copyright © 2008 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characteristics of convectively-generated gravity waves during an episode of deep convection near the coast of Wales are examined in both high resolution mesoscale simulations [with the (UK) Met Oce Unified Model] and in observations from a Mesosphere-Stratosphere-Troposphere (MST) wind profiling Doppler radar. Deep convection reached the tropopause and generated vertically propagating, high frequency waves in the lower stratosphere that produced vertical velocity perturbations O(1 m/s). Wavelet analysis is applied in order to determine the characteristic periods and wavelengths of the waves. In both the simulations and observations, the wavelet spectra contain several distinct preferred scales indicated by multiple spectral peaks. The peaks are most pronounced in the horizontal spectra at several wavelengths less than 50 km. Although these peaks are most clear and of largest amplitude in the highest resolution simulations (with 1 km horizontal grid length), they are also evident in coarser simulations (with 4 km horizontal grid length). Peaks also exist in the vertical and temporal spectra (between approximately 2.5 and 4.5 km, and 10 to 30 minutes, respectively) with good agreement between simulation and observation. Two-dimensional (wavenumber-frequency) spectra demonstrate that each of the selected horizontal scales contains peaks at each of preferred temporal scales revealed by the one- dimensional spectra alone.