1000 resultados para Malaguide Complex
Resumo:
Improved efficiency of organic light-emitting diodes (OLEDs) based on europium complexes have been realized by using a fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl))-4H-pyran (DCJTB) doping. The luminous efficiency of the devices with a fluorescent dye in the emissive layer was found to improve two times of that in devices without fluorescent dye. The devices showed pure red light, which is the characteristic emission of trivalent europium ion with a full-width at half-maximum of 3 nm. The maximum brightness and luminous efficiency reached 1200 cd/m(2) at 23 V and 7.3 cd/A (2.0 Im/w), respectively, at a current density of 0.35 mA/cm(2).
Resumo:
Pure red organic light-emitting diodes based on a dinuclear europium complex with a structure of (TTA)(3)Eu(PYO)(2)Eu(TTA)3 (TTA = thenoyltrifluoroacetonate, PYO = pyridine N-oxide) were presented. The devices showed pure red emission at a peak wavelength of 612 nm with a full width at half maximum of 3 nm, which is a characteristic emission from Eu3+ ion based on D-5(0) -> F-7(2) transition. The maximum brightness and electroluminescent (EL) efficiency reached 340 cd/m(2) at a driving voltage of 19 V and 2.4 cd/A (0.78 lm/W) at a current density of 0.14 mA/cm(2), respectively.
Resumo:
Zinc(II)-2-(2-hydroxyphenyl)benzothiazolate complex is an excellent white-light-emitting material. Despite some studies devoted to this complex, no information on the real origin of the unusually broad electroluminescent (EL) emission is available. Therefore, we investigate photoluminescent and EL properties of the zinc complex. Orange phosphorescent emission at 580 nm was observed for the complex in thin film at 77 K, whereas only fluorescent emission was obtained at room temperature. Molecular orbitals, excitation energy, and emission energy of the complex were investigated using quantum chemical calculations. We fabricated the device with a structure of ITO/F16CuPc(5.5 nm)/Zn-complex/Al, where F16CuPc is hexadecafluoro copper phthalocyanine. The EL spectra varied strongly with the thickness of the emissive layer. We observed a significant change in the emission spectra with the viewing angles. Optical interference effects and light emission originating both from fluorescence and from phosphorescence can explain all of the observed phenomena, resulting in the broad light emission for the devices based on the Zn complex. We calculated the charge transfer integral and the reorganization energy to explain why the Zn complex is a better electron transporter than a hole transporter.
Resumo:
A lutetium bis( alkyl) complex stabilized by a flexible amino phosphine ligand LLu( CH2Si(CH3)(3))(2)(THF) (L = (2,6-C6H3( CH3)(2)) NCH( C6H5) CH2P(C6H5)(2)) was prepared which upon insertion of N, N'-diisopropylcarbodiimide led to C-H activation via metalation of the ligand aryl methyl followed by reduction of the C=N double bond.
Resumo:
A series of cerium dioxide (CeO2,)/polyimide (PI) nanocomposites were successfully prepared from Ce(Phen)(3) and polyamic acid (PAA) via the solution direct-dispersing method, followed by a step thermal imidization process. TGA and XPS studies showed that the cerium complex decomposed to form CeO2, during the thermal imidization process at 300 degrees C. SEM observation showed that the formed CeO2, as nalloparticles was well dispersed in polyimide matrix with a size of about 50-100 nm for samples with different contents of CeO2. Thermal analysis indicated that the introduction of CeO2, decreased the thermal stability of nanocomposite films due to the decomposition of Ce(Phen)(3) in the imidization process, while the glass transition temperature (T-g) increased obviously. especially nanocomposite films with high loading of CeO2 exhibited a trend of disappearance off, DMTA and static tensile measurements showed that the storage modulus of nanocomposite films increased, while the elongation at break decreased with increasing CeO2 content.
Resumo:
The reaction of Cu(BF4)(2) with pyridine-2,6-dicarboxylic acid (H(2)pydc) and trans-1,2-bis(4-pyridyl)ethylene (bpe) under hydrothermal conditions afforded a porous mixed-valence (CuCuII)-Cu-I coordination polymer. Coexistence of tetrameric and decameric water clusters within the channels of the complex leads to a novel water chain. The metal-organic framework provides both hydrophilic and hydrophobic environments for stabilizing the clusters and retains its integrity upon dehydration and rehydration.
Resumo:
We successfully prepared a new kind of thermoresponsive and fluorescent complex of Tb(III) and PNIPAM-g-P(NIPAM-co-St) (PNNS) core-shell nanoparticle. It was found that Tb(III) mainly bonded to 0 of the carbonyl groups of PNNS, forming the novel (PNIPAM-g-P(NIPAM-co-St))-Tb(III) (PNNS-Tb(III)) complex. The maximum emission intensity of the complex at 545 nm is enhanced about 223 times comparing to that of the pure Tb(III). The intramolecular energy transfer efficiency from PNNS to Tb(III) reaches 50%. When the weight ratio of Tb(III) and the PNNS-Tb(III) complex is 1.2 wt.%, the enhancement of the emission fluorescence intensity at 545 nm is highest.
Resumo:
The homogeneous electrocatalytic reduction of 1,2-diiodoethane by anions of the supramolecular complex of (beta-CD)(2)/C-60 in DMF solution is reported. The results show that the trianion of (beta-CD)(2)/C-60 exhibits electrocatalytic behavior towards the reduction of 1,2-diiodoethane, whereas the diani on is unable to reduce the diiodoethane. The second-order catalytic rate constant in DMF solution was determined to be 3.1 x 10(5) M-1 s(-1) by analysis of voltammetric responses under pseudo-first-order conditions with respect to (beta-CD)(2)/C-60. The results suggest that the host beta-cyclodextrin molecules have little effect on the electrocatalytic ability of the encapsulated C-60 toward organic halides.
Resumo:
According to the strong application background of bioflavonoid and metal-flavonoid complexes, novel electrospray ionization tandem mass spectrometry (ESI-MSn) was applied to investigate the structure and fragmentation mechanism of transition metal-rutin complexes. In the full-scan mass spectra, different stoichiometric ratios of rutin-metal complexes were found. In the reaction between rutin and Cu, four kinds of complexes with four different stoichiometric ratios were produced. In the reaction between rutin and Zn, Mn(II), and Fe(II), only two kind of complexes with stoichiometric ratios of 1:1 and 1:2 occured. In further tandem mass spectrometric experiments of different rutin-metal complexes, product fragments, came from the neutral loss of the external rhamnose and the internal glucose unit, oligosaccharide chain, aglycone, and small organic molecules. According to the MSn data, we proposed a mechanism for all fragments of the rutin-Cu complex A and the structure of two rutin-Cu complexes, C and D.
Resumo:
Reaction of 2,6-pyridinedicarboxylic with CoCl2 . 6H(2)O in aqueous solution give rise to a three-dimensional Complex CO2(2,6-DPC)(2)Co(H2O)(5).2H(2)O (DPC = 2,6-pyridinedicarboxylate) 1. It has been characterized by elemental analyses, infrared spectra (IR) spectrum, thermogravimetric (TG) analysis, EPR spectrum, and single crystal X-ray diffraction. The complex crystallizes in the P2(1)/c space group with a = 8.3906(3) Angstrom, b = 27.4005(8) Angstrom, c = 9.6192(4) A, alpha = 90.00degrees, beta = 98.327(2)degrees, gamma = 90.00degrees, V = 2188.20(14) Angstrom(3), Z = 4. There are two types of cobalt environments: Co(1) is coordinated by four oxygen atoms from four carboxyl groups and two nitrogen 2 atoms which are all from pdc(2). Co(2) is coordinated by six oxygen atoms, five from coordinated water molecules and one from a carboxyl of pdc(2) - of which the other oxygen atom is linked to the Co(1). The extensive intermolecular hydrogen bonds are formed in the crystal by means of the five coordinated water molecules.
Resumo:
The electrooxidation of bilirubin (BR) and bovine serum albumin (BSA) complexes was studied by in situ circular dichroism (CD) spectroelectrochemistry. The result showed that the mechanism of the whole electrooxidation process of this complex corresponded to electrochemical processes (EE mechanism) in aqueous solution. Some parameters of the process were obtained by double logarithm method, differential method and nonlinear regression method. In visible region, CD spectra of the two enantiomeric components of the complex and their fraction distribution against applied potentials were obtained by singular value decomposition least-square (SVDLS) method. Meanwhile, the distribution of the five components of secondary structure was also obtained by the same method in far-UV region. The peak potential gotten from EE mechanism corresponds to a turning point for the component transition, beyond which the whole reaction reaches a new equilibrium. Under applied positive potentials, the enantiomeric equilibrium between M and P form is broken and M form transfers to its enantiomer of P, while the fraction of alpha-helix increases and that improves the transition to P form.
Resumo:
The terbium complex supported by beta-diketiminate was synthesized and structurally characterized. Due to an efficient energy transfer from the ligand to the central Tb3+, this complex shows a strong emission corresponding to Tb3+5D4-F-7(J) (J = 6,5,4,3) transitions, with D-5(4)-F-7(5) (550 nm) green emission as the most prominent group. The decay behavior of Tb3+ luminescence depends strongly on the excitation wavelengths.
Resumo:
By doping a fluorescent dye in the emissive layer, we realized high efficient red organic light-emitting diodes (OLEDs) based on a europium complex. The OLEDs realized by this method showed pure red emission at 612 nm with a full width at half maximum Of 3 nm. The Commission International de L'Eclairage Coordination keeps approximately the same as the emission of pure Eu3+. The maximum brightness and EL efficiency reached 2450 cd/m(2) at 20 V and 9.0 cd/A (6.0 lm/w) at a current density of 0.012 mA/cm(2), respectively. At the brightness of 100 cd/m(2), the current efficiency reached 4.4 cd/A.
Resumo:
The multi-layered electroluminescent device consisting of Eu(TTA)(3)(2,2'-bipyridine mono N-oxide) (TTA = 2-thenoyltrifluoroacetonate) as the red dopant exhibited an impressive current and power efficiency at a brightness of 100 cd m(-2) and voltage-independent spectral stability.
Resumo:
An aluminum/Schiff base complex {[2,2-dimethyl-1,3-propylenebis(3,5-di-tert-butylsalicylideneiminato)](isopropanolato)aluminum(III) (2)} based on a bulky ligand and aluminum isopropoxide was prepared and employed for the stereoselective ring-opening polymerization (ROP) of rac-lactide (rac-LA). The initiator was characterized with nuclear magnetic resonance (NMR), crystal structure measurements, and elemental analysis. It contained a five-coordinate aluminum atom that was trigonal bipyramidal in the solid state according to the crystal structure measurements. The two conformational stereoisomers of 2 exchanged quickly on the NMR scale. Compound 2 polymerized rac-LA into a crystalline polymer that was characterized with H-1 NMR, wide-angle X-ray diffraction, electrospray ionization mass spectrometry, and gel permeation chromatography. The kinetics of the polymerization were first-order in both the monomer and initiator, and there was a linear relationship between the rac-LA conversion and the number-average molecular weight of poly(rac-LA) with a narrow molecular distribution (1.04-1.08). These features showed that the polymerization was well controlled. The high melting temperature (196-201 degreesC) and isotacticity of poly(rac-LA) indicated that complex 2 was a highly stereoselective initiator for the ROP of rac-LA.