991 resultados para MICRO-EXON GENES
Resumo:
Gene fission and fusion, the processes by which a single gene is split into two separate genes and two adjacent genes are fused into a single gene, respectively, are among the primary processes that generate new genes(1-4). Despite their seeming reversibi
Resumo:
Gene number difference among organisms demonstrates that new gene origination is a fundamental biological process in evolution. Exon shuffling has been universally observed in the formation of new genes. Yet to be learned are the ways new exons originate and evolve, and how often new exons appear. To address these questions, we identified 2695 newly evolved exons in the mouse and rat by comparing the expressed sequences of 12,419 orthologous genes between human and mouse, using 743,856 pig ESTs as the outgroup. The new exon origination rate is about 2.71 x 10(-3) per gene per million years. These new exons have markedly accelerated rates both of nonsynonymous substitutions and of insertions/ deletions (indels). A much higher proportion of new exons have Kappa(a)/Kappa(s) ratios > 1 (where K-a is the nonsynonymous substitution rate and K-s is the synonymous substitution rate) than K do the old exons shared by human and mouse, implying a role of positive selection in the rapid evolution. The majority of these new exons have sequences unique in the genome, suggesting that most new exons might originate through "exonization" of intronic sequences. Most of the new exons appear to be alternative exons that are expressed at low levels.
Resumo:
The inherent interest on the origin of genetic novelties can be traced back to Darwin. But it was not until recently that we were allowed to investigate the fundamental process of origin of new genes by the studies on newly evolved Young genes. Two indisp
Resumo:
Several mechanisms have been proposed to account for the origination of new genes. Despite extensive case studies, the general principles governing this fundamental process are still unclear at the whole-genome level. Here, we unveil genome-wide patterns
Resumo:
Origination of new genes is an important mechanism generating genetic novelties during the evolution of an organism. Processes of creating new genes using preexisting genes as the raw materials are well characterized, such as exon shuffling, gene duplicat
Resumo:
Previous studies of repetitive elements (REs) have implicated a mechanistic role in generating new chimerical genes. Such examples are consistent with the classic model for exon shuffling, which relies on non-homologous recombination. However, recent data
Resumo:
Background: Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI) gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection. Results: Through synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process. Conclusion: How gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experiencedsub-functionalization implies that selection could act independently on each duplicate towards different functional specificity, which provides a vivid example for evolution of genetic novelties in a model crop. Our results also further support the established hypothesis that gene duplication with sub-functionalization could be one solution for genetic adaptive conflict.
Sequencing, annotation and comparative analysis of nine BACs of giant panda (Ailuropoda melanoleuca)
Resumo:
A 10-fold BAC library for giant panda was constructed and nine BACs were selected to generate finish sequences. These BACs could be used as a validation resource for the de novo assembly accuracy of the whole genome shotgun sequencing reads of giant panda newly generated by the Illumina GA sequencing technology. Complete sanger sequencing, assembly, annotation and comparative analysis were carried out on the selected BACs of a joint length 878 kb. Homologue search and de novo prediction methods were used to annotate genes and repeats. Twelve protein coding genes were predicted, seven of which could be functionally annotated. The seven genes have an average gene size of about 41 kb, an average coding size of about 1.2 kb and an average exon number of 6 per gene. Besides, seven tRNA genes were found. About 27 percent of the BAC sequence is composed of repeats. A phylogenetic tree was constructed using neighbor-join algorithm across five species, including giant panda, human, dog, cat and mouse, which reconfirms dog as the most related species to giant panda. Our results provide detailed sequence and structure information for new genes and repeats of giant panda, which will be helpful for further studies on the giant panda.
Resumo:
The phylogenetic relationships among rhacophorid frogs are under dispute. We use partial sequences of three mitochondrial (12S rRNA, 16S rRNA, and cytochrome b) and three nuclear protein-coding (Rag-1 rhodopsin exon 1, and tyrosinase exon 1) genes from 57