973 resultados para MATERIALS SCIENCE, CHARACTERIZATION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Agâ26.5Cuâ3Ti and Agâ34.5Cuâ1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Agâ26.5Cuâ3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Agâ34.5Cuâ1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cmâˆ2. Nevertheless, the joints produced at 850 °C using a Agâ26.5Cuâ3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cmâˆ2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work reports on the experimental and numerical study of the bending behaviour of two-dimensional adhesively-bonded scarf repairs of carbon-epoxy laminates, bonded with the ductile adhesive Araldite 2015®. Scarf angles varying from 2 to 45º were tested. The experimental work performed was used to validate a numerical Finite Element analysis using ABAQUS® and a methodology developed by the authors to predict the strength of bonded assemblies. This methodology consists on replacing the adhesive layer by cohesive elements, including mixed-mode criteria to deal with the mixed-mode behaviour usually observed in structures. Trapezoidal laws in pure modes I and II were used to account for the ductility of the adhesive used. The cohesive laws in pure modes I and II were determined with Double Cantilever Beam and End-Notched Flexure tests, respectively, using an inverse method. Since in the experiments interlaminar and transverse intralaminar failures of the carbon-epoxy components also occurred in some regions, cohesive laws to simulate these failure modes were also obtained experimentally with a similar procedure. A good correlation with the experiments was found on the elastic stiffness, maximum load and failure mode of the repairs, showing that this methodology simulates accurately the mechanical behaviour of bonded assemblies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyolefins are especially difficult to bond due to their non-polar, non-porous and chemically inert surfaces. Acrylic adhesives used in industry are particularly suited to bond these materials, including many grades of polypropylene (PP) and polyethylene (PE), without special surface preparation. In this work, the tensile strength of single-lap PE and mixed joints bonded with an acrylic adhesive was investigated. The mixed joints included PE with aluminium (AL) or carbon fibre reinforced plastic (CFRP) substrates. The PE substrates were only cleaned with isopropanol, which assured cohesive failures. For the PE CFRP joints, three different surfaces preparations were employed for the CFRP substrates: cleaning with acetone, abrasion with 100 grit sand paper and peel-ply finishing. In the PE AL joints, the AL bonding surfaces were prepared by the following methods: cleaning with acetone, abrasion with 180 and 320 grit sand papers, grit blasting and chemical etching with chromic acid. After abrasion of the CFRP and AL substrates, the surfaces were always cleaned with acetone. The tensile strengths were compared with numerical results from ABAQUS® and a mixed mode (I+II) cohesive damage model. A good agreement was found between the experimental and numerical results, except for the PE AL joints, since the AL surface treatments were not found to be effective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the shear modulus and strength of the acrylic adhesive 3M® DP 8005 was evaluated by two different methods: the Thick Adherend Shear Test (TAST) and the Notched Plate Shear Method (Arcan). However, TAST standards advise the use of a special extensometer attached to the specimen, which requires a very experienced technician. In the present study, the adhesive shear displacement for the TAST was measured using an optical technique, and also with a conventional inductive extensometer of 25 mm used for tensile tests. This allowed for an assessment of suitability of using a conventional extensometer to measure this parameter. Since the results obtained by the two techniques are identical, it can be concluded that using a conventional extensometer is a valid option to obtain the shear modulus for the particular adhesive used. In the Arcan tests, the adhesive shear displacement was only measured using the optical technique. This work also aimed the comparison of shear modulus and strength obtained by the TAST and Arcan test methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article reports on a new and swift hydrothermal chemical route to prepare titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting material. The synthesis approach uses a commercial solution of TiCl3 as titanium source to prepare an amorphous precursor, circumventing the use of hazardous chemical compounds. The influence of the reaction temperature and dwell autoclave time on the structure and morphology of the synthesised materials was studied. Homogeneous titanate nanotubes with a high length/diameter aspect ratio were synthesised at 160 degrees C and 24 h. A band gap of 3.06 +/- 0.03 eV was determined for the TNS samples prepared in these experimental conditions. This value is red shifted by 0.14 eV compared to the band gap value usually reported for the TiO2 anatase. Moreover, such samples show better adsorption capacity and photocatalytic performance on the dye rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98% reduction of the R6G concentration was achieved after 45 min of irradiation of a 10 ppm dye aqueous solution and 1 g L-1 of TNS catalyst.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distinctive characteristics of carbon fibre reinforced plastics, like low weight or high specific strength, had broadened their use to new fields. Due to the need of assembly to structures, machining operations like drilling are frequent. In result of composites inhomogeneity, this operation can lead to different damages that reduce mechanical strength of the parts in the connection area. From these damages, delamination is the most severe. A proper choice of tool and cutting parameters can reduce delamination substantially. In this work the results obtained with five different tool geometries are compared. Conclusions show that the choice of an adequate drill can reduce thrust forces, thus delamination damage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Materials Science Forum Vols. 730-732 (2013) pp 433-438

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microinjection molding of polymer composites with carbon nanotubes (CNT) requires previous production of the nanocomposites, often by melt extrusion. Each processing step has a thermo-mechanical effect on the polymer melt, conveying different properties to the final product. In this work, polyamide 6 and its composites with pristine and functionalized CNT (f-CNT) were processed by a mini twin-screw extrusion, followed by microinjection molding. The morphology induced on the polymer by each process was analyzed by differential scanning calorimetry and wide angle X-ray diffraction. Calorimetric analysis showed a secondary crystallization for the microinjected materials, absent for the extruded materials. The characterization of microinjected polyamide 6 by X-ray diffraction revealed a large contribution of the c phase to the total crystallinity, mainly in the skin region, while the nanocomposites and extruded materials were characterized by a larger contribution of the a phase. Functionalization of CNT did not affect significantly the polymer morphology compared to composites with pristine CNT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer based wicking structures were fabricated by sintering powders of polycarbonate (PC), ultra-high molecular weight polyethylene and polyamide 12, aiming at selecting a suitable material for an innovative electroencephalography (EEG) bio-electrode. Preliminary experiments showed that PC based wicks displayed the best mechanical properties, therefore more detailed studies were carried out with PC to evaluate the influence of powder granulometry and processing parameters (pressure, temperature and time) on the mechanical properties, porosity, mean pore radius and permeability of the wicks. It was concluded that the mechanical properties are significantly enhanced by increasing the processing time and pressure, although at the expense of a significant decrease of porosity and mean pore diameter (and thus permeability), particularly for the highest applied pressures (74kPa). However, a good compromise between porosity/permeability and mechanical properties could be obtained by sintering PC powders of particle sizes below 500μm at 165°C for 5min, upon an applied pressure of 56kPa. Moreover, PC proved to be chemically stable in contact with an EEG common used disinfectant. Thus, wicking structures with appropriate properties for the fabrication of reusable bio-electrodes could be fabricated from the sintering of PC powders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyimide co-polymers have been prepared based on different diamines as co-monomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed and the dielectric complex function, ac conductivity and electric modulus of the co-polymers were investigated as a function of CN group content in the frequency range from 0.1 Hz to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150ºC, the dielectric constant increases with increasing temperature due to increaseing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups an important Maxwell-Wagner-Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN groups content present in the samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a systematic study for the production of poly(vinylidene fluoride-hexafluoropropylene), P(VDF-HFP), porous films using solvent evaporation (SE) and non-solvent induced phase separation (NIPS) techniques. Parameters such as volume fraction of the copolymer solution, film thickness, time exposure to air, non-solvent and temperature of the coagulation bath were investigated on the morphology, crystallization and mechanical properties of the samples. Films with different porous morphologies including homogeneous pore sizes, macrovoids and spherulites were obtained depending on the processing conditions, which in turn affect the wettability and mechanical properties of the material. Knowing that the phase content of the films also depends on the processing conditions, this paper shows that P(VDF-HFP) films with tailored porous morphology, electroactive phase content, hydrophobicity, cristallinity and mechanical properties can be achieved for a specific application using the adequate SE and NIPS techniques conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer based scintillator composites have been produced by combining polystyrene (PS) and Gd2O3:Eu3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd2O3:Eu3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1wt.% of 2,5 dipheniloxazol (PPO) and 0.01wt.% of (1,4-bis(2-(5-phenioxazolil))-benzol (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e. the measured intensity of the output visible radiation, under X-ray irradiation. Whereas increasing scintillator filler concentration (from 0.25wt.% to 7.5wt.%) increases scintillator light yield, decreases the optical transparency of the composite. The addition of PPO and POPOP, strongly increased the overall 2 transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd2O3:Eu3+/PPO/POPOP/PS composites in 0.25 wt.% of scintillator content with fluorescence molecules is suitable for the development of innovate large area X-ray radiation detectors with huge demand from the industries.