980 resultados para Low-temperature WGS reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly crystalline ZnO and Ga-modified zinc oxide (ZnO:Ga) nanoparticles containing 1, 3 and 5 atom% of Ga3+ were prepared by precipitation method at low temperature. The films were characterized by XRD, BET, XPS and SEM. No evidence of zinc gallate formation (ZnGa2O4), even in the samples containing 5 atom% of gallium, was detected by XRD. XPS data revealed that Ga is present into the ZnO matrix as Ga3+, according to the characteristic binding energies. The particle size decreased as the gallium level was increased as observed by SEM, which might be related to a faster hydrolysis reaction rate. The smaller particle size provided films with higher porosity and surface area, enabling a higher dye loading. When these films were applied to dye-sensitized solar cells (DSSCs) as photoelectrodes, the device based on ZnO: Ga 5 atom% presented an overall conversion efficiency of 6% (at 10 mW cm(-2)), a three-fold increase compared to the ZnO-based DSSCs under the same conditions. To our knowledge, this is one of the highest efficiencies reported so far for ZnO-based DSSCs. Transient absorption (TAS) study of the photoinduced dynamics of dye-sensitized ZnO:Ga films showed that the higher the gallium content, the higher the amount of dye cation formed, while no significant change on the recombination dynamics was observed. The study indicates that Ga-modification of nanocrystalline ZnO leads to an improvement of photocurrent and overall efficiency in the corresponding device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical properties of the grain boundary region of electroceramic sensor temperature based on inverse spinel Zn7Sb2O12 were investigated at high temperature. The zinc antimoniate was synthesized by a chemical route based on the modified Pechini method. The electric properties of Zn7Sb2O12 were investigated by impedance spectroscopy in the frequency range from 5 Hz to 13 MHz and from 250 up to 600 degreesC. The grain boundary conductivity follows the Arrhenius law, with two linear branches of different slopes. These branches exhibit activation energies with very similar values; the low-temperature (less than or equal to350 degreesC) and high-temperature (greater than or equal to400 degreesC) regions are equal to 1.15 and 1.16 eV, respectively. Dissimilar behavior is observed on the relaxation time (tau) curve as a function of temperature, where a single slope is identified. The negative temperature coefficient parameters and nature of the polarization phenomenon of the grain boundary are discussed. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A CMOS low-voltage, wide-swing continuous-time current amplifier is presented. Exhibiting an open-loop architecture, the circuit is composed of transresistance and transconductance stages built upon triode-operating transistors. In addition to an extended dynamic range, the current gain can be programmed within good accuracy by a rapport involving only transistor geometries and tuning biases. Low temperature-drift on gain setting is then expected.In accordance with a 0.35 mum n-well CMOS fabrication process and a single 1.1 V-supply, a balanced current-amplifier is designed for a programmable gain-range of 6 - 34 dB and optimized with respect to dynamic range. Simulated results from PSPICE and Bsim3v3 models indicate, for a 100 muA(pp)-output current, a THD of 0.96 and 1.87% at 1 KHz and 100 KHz, respectively. Input noise is 120 pArootHz @ 10 Hz, with S/N = 63.2 dB @ 1%-THD. At maximum gain, total quiescent consumption is 334 muW. Measurements from a prototyped amplifier reveal a gain-interval of 4.8-33.1 dB and a maximum current swing of 120 muA(pp). The current-amplifier bandwidth is above 1 MHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parabolic quantum wells (PQWs) have been studied by temperature dependent photoluminescence (PL). Two kind of samples have been studied. Concerning the undoped sample, the dominant luminescences were the bulk GaAs and the fundamental transition of the PQW. The evolution on temperature of the energy position of both PL emissions follows the well known Varshing formula. For the doped samples strong radiative recombination of the electron gas with photogenerated holes was observed. At low temperature strong Fermi level enhancement occurs in the luminescence as a result of the multi-electron-hole scattering, which is smear out increasing the temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanosized and highly reactive magnesium mobate (MgNb2O6) powders were successfully synthesized by a new wet-chemical method by means of the dissolution of Nb2O5 center dot 5H(2)O and in a solution of oxalic acid followed by the addition of stoichiometric amounts of magnesium carbonate. The Nb-Mg-oxalic acid solution was evaporated resulting in a dry and amorphous powder that was calcined in the temperature range from 200 to 900 degrees C for 2 h. The crystallization process from the amorphous state to the crystalline MgNb2O6 was followed by thermal analysis. The calcined powders characterized by FT-Raman spectroscopy, X-ray diffraction (XRD) and their morphology examined by high resolution scanning electron microscopy (HR-SEM). Pure MgNb2O6, free from the second phases and obtained at 800 degrees C was confirmed by a combined analysis using XRD and FT-Raman. The average diameter of the particles was calculated from the HR-SEM image as 70 urn approximately. This technique allows a better mixing of the constituent elements and thus a better reactivity of the mixture to obtain pre-reaction products with high purity at lower temperatures and reducing cost. It can offer a great advantage in the PMN-PT formation with respect to the solid-state synthesis. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminium Hydroxides were precipitated from Aluminium Nitrate and Ammonium Hydroxide, at the temperatures 64 degrees C (hot) and 25 degrees C (cold), under the pH conditions 5, 7 and 9. The samples were characterized by X-Ray Diffraction (XRD) and Differential Thermal Analysis (DTA). The hydroxide precipitated at pH 9 and 64 degrees C is built up by pseudoboehmite and a minor share of others apparently amorphous hydroxides. The crystallinity of the hot yielded pseudoboehmite diminishes with the pH. The crystallite size was evaluated as about 40 Angstrom for the best crystallized sample. The cold precipitated product is apparently composed by amorphous or very poorly crystallized hydroxides. Upon heating, the cold precipitated hydroxides, and the low pH and hot precipitated hydroxide, release their structural water before the occurrence, about 430 degrees C, of the transition of the pseudoboehmite to gamma-alumina, and exhibit a shifting (towards low temperature side) and a broadening in the peak of the transition to alpha-alumina, which occurs at 1200 degrees C in the pseudoboehmite pattern. The yielded pseudo-boehmite peptized by HNO3, addition and gelified by evaporation in a critical concentration approximately 0.17 gcm(-3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bothropstoxin-I (BthTX-I), from B. jararacussu venom, is a phospholipase A(2) (PLA(2)) homologue devoid of enzymatic activity. Besides inducing severe myonecrosis, BthTX-I promotes paralysis of both directly and indirectly evoked contractions in isolated neuromuscular preparations. We applied an experimental paradigm in order to characterize the steps involved in the toxic effects of BthTX-I on mouse neuromuscular junction. Myotoxicity was assessed by microscopic analysis of extensor digitorum longus muscles; paralyzing activity was evaluated through the recording of isolated contractions indirectly evoked in phrenic-diaphragm preparations. After 90 min at 35 degreesC, BthTX-I induced complete and irreversible paralysis, and damaged 30.3 +/- 2.7% of muscle fibers. In contrast, no effect was observed when tissues were incubated with BthTX-I at 10degreesC for 60 min and subsequently washed with toxin-free solution and maintained at 35 degreesC. These results indicate that the binding of BthTX-I to the cellular tissue surface is very weak at low temperature and that an additional factor is necessary. However, when tissues were submitted to BthTX-I (10degreesC for 60 min), and the temperature was elevated to 35 degreesC, omitting the washing step, it was observed muscle paralysis and damage in 39.04 +/- 4.2% of muscle fibers. These results indicate that a temperature-dependent step is necessary for BthTX-I to promote both its myotoxic and paralyzing activities. (C) 2004 Elsevier B.V.. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibrinolysis is a basic defense mechanism of the organism designed to control the deposition of fibrin in the vascular system and elsewhere. Fibrinolytic activity was measured by the fibrin plate method for three groups of rats (N = 6) that were maintained at room temperature, 20-25 degrees C, 3 degrees C or 38 degrees C for 4 h before testing. Based on measurement of fibrinolytic activity, the level of plasminogen activator released from isolated aortic segments of rats maintained at room temperature (24-28 degrees C) differed significantly from that of the 38 degrees C group. The animals maintained at 3 degrees C did not release plasminogen activator, suggesting that the fibrinolytic response was impaired at low temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC) in association with chemical analysis was applied to assess the maturity reached by the organic fraction of Municipal Solid Wastes (MSW) subjected to composting processes with manual and fixed aeration and sampled at different composting times. Thermograms showed that the difference in the treatments, i.e., the manual aeration and the fixed aeration, had no relevant effect on the stabilization and maturation of OM in the substrates. Common thermal effects observed were: a low temperature endotherm assigned to dehydration and/or loss of peripheral polysaccharides chains; a medium temperature exotherm assigned to loss of peptidic structures, and a high temperature exotherm assigned to oxydation and polycondensation of aromatic nuclei of the molecule. Results obtained suggest that in the experimental conditions used, a shorter time of composting (about 30 d) appears adequate, in order to limit the extended mineralization of OM, whereas a prolonged composting time (up to 132 d) would produce a compost of poor quality with high ash content and low OM content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H2O2 into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H2O2 in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H2O2 release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H2O2 concentration in seawater (R = 0.673), total superoxide dismutase activity (R = 0.689), and particularly indexes of protein (R = 0.869) and lipid oxidation (R = 0.864), were moderately correlated. These data suggest that the release of H2O2 from plastids into seawater possibly impaired efficient and immediate responses of pivotal H2O2-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.