966 resultados para Low-frequency variants
Resumo:
The Pliocene (5.3-2.6 Ma) is often described as a relatively stable climatic period, with warm temperatures characterizing high latitudes. New suborbital resolved stable isotope records from ODP Hole 642B in the Eastern Nordic Seas document that the Pliocene was not a stable period characterized by one climate. Rather, seven distinct climate phases, each lasting between 150,000 and 400,000 years, are identified and characterized in the time interval 5.1-3.1 Ma. Four of the transitions between the defined climate phases occurred close to an eccentricity minimum and a minimum in amplitude of change for Northern Hemisphere summer insolation, while two occurred around an eccentricity maximum and a maximum in amplitude in insolation change. Hence, a low frequency response of the Nordic Seas to insolation forcing is indicated. In addition, paleogeographic and related paleoceanographic changes, expansion of the Arctic sea ice cover and onset of NHG were important factors behind the evolving Pliocene low frequency variability in the eastern Nordic Seas. It is likely that the identified climate phases and transitions are important beyond the Nordic Seas, due to their association with changes to both insolation and paleogeography. Also, a strong and variable degree of diagenetic calcite overgrowth is documented for the planktic foraminifera, especially influencing the planktic d18O results; the absolute values and amplitude of change cannot be taken at face value.
Resumo:
About 10% of faults involving the electrical system occurs in power transformers. Therefore, the protection applied to the power transformers is essential to ensure the continuous operation of this device and the efficiency of the electrical system. Among the protection functions applied to power transformers, the differential protection appears as one of the main schemes, presenting reliable discrimination between internal faults and external faults or inrush currents. However, when using the low frequency components of the differential currents flowing through the transformer, the main difficulty of the conventional methods of differential protection is the delay for detection of the events. However, internal faults, external faults and other disturbances related to the transformer operation present transient and can be appropriately detected by the wavelet transform. In this paper is proposed the development of a wavelet-based differential protection for detection and identification of external faults to the transformer, internal faults, and transformer energizing by using the wavelet coefficient energy of the differential currents. The obtained results reveal the advantages of using of the wavelet transform in the differential protection compared to conventional protection, since it provides reliability and speed in detection of these events.
Resumo:
Parkinson disease (PD) is associated with motor symptoms and dopaminergic cell loss in the nigrostriatal pathway. Alpha-synuclein is the major component of the Lewy bodies, the biological hallmarks of disease, and has been associated with familial cases of PD. Recently, the spinal cord stimulation (SCS) showed to be effective to alleviate the Parkinson symptoms in animal models and human patients. In this project, we characterized the motor and electrophysiological effects of alpha-synuclein overexpression in the substantia nigra of rats. We further investigated the effects of spinal electrical stimulation, AMPT and L-dopa administration in this model. Method: Sprague-Dawley rats were injected with empty viral vector or the vector carrying the gene for alpha-synuclein in the substantia nigra, and were tested weekly for 10 weeks in the open field and cylinder tests. A separated group of animals implanted with bilateral electrode arrays in the motor cortex and the striatum were recorded in the open field, during the SCS sessions and the pharmacological experiments. Results: Alpha-synuclein expression resulted in motor asymmetry, observed as the reduction in use of contralateral forepaw in the cylinder test. Animals showed an increase of local field potential activity in beta band three and four weeks after the virus injection, that was not evident after the 5th week. AMPT resulted in a sever parkinsonian state, with reduction in the locomotor activity and significant peak of oscillatory activity in cortex and striatum. SCS was effective to alleviate the motor asymmetry at long term, but did not reduce the corticostriatal low frequency oscillations observed 24 hs after the AMPT administration. These oscillations were attenuated by L-dopa that, even as SCS, was not effective to restore the locomotor activity during the severe dopaminergic depletion period. Discussion: The alpha-synuclein model reproduces the motor impairment and the progressive neurodegenerative process of PD. We demonstrated, by the first time, that this model also presents the increase in low frequency oscillatory activity in the corticostriatal circuit, compatible with parkinsonian condition; and that SCS has a therapeutic effect on motor symptom of this model.
Resumo:
Introduction: Slow abdominal breathing (SAB) stimulates baroreflex and generates respiratory sinus arrhythmia, changing cardiovascular, emotional and cerebral systems acute and chronically. However, although meditative practices have been receiving increasingly attention in the last years, there is no agreement on the neurophysiological changes underlying them, mainly because of the lack of topographical pieces of information. Purpose: We aimed to analyze the acute effect of SAB on brain activity, emotional and cardiovascular responses in untrained subjects in meditative techniques. Methods: Seventeen healthy adults’ men were assessed into two different sessions in a random and crossed order. Into experimental session, they breathed in 6 cycles/minute and in control session they kept breathing in normal rate, both for 20 minutes. xi Before, during, and after each session we assessed brain activity using electroencephalography (EEG), anxiety, mood, heart rate variability (HRV) and blood pressure. The sLORETA software was used to analyze EEG data for source localization of brain areas in which activity was changed. Results: The sLORETA showed that beta band frequency was reduced in frontal gyrus (P<0.01) and anterior cingulate cortex (P<0.05) both during and after SAB (P<0.05) compared to the moment before it. There was no change in brain activity in control session. Additionally, a two-way repeated measures ANOVA showed that there was no effect on anxiety (P>0.8) and mood (P>0.08). There were improvements in HRV (P<0.03), with increased RR interval and decreased HR after SAB, as well as increased SDNN, RMSSD, pNN50, low frequency, LF/HF ratio, and total power during it, with no changes in SBP and DBP. Conclusions: We conclude that SAB is able to change brain activity in areas responsible for emotional processing, even without behavioral changes. Furthermore, SAB improves HRV and does not change blood pressure in normotensive.
Resumo:
This work shows that the synthesis by combustion is a prominent alternative to obtain ceramic powders of higher oxides, nanostructured and of high purity, as the ferrites of formulas Co(1-x)Zn(x)Fe2O4 e Ni(1-x)Zn(x)Fe2O4 with x ranging from 0.2 mols, in a range from 0.2 ≤ x ≥ 1.0 mol, that presents magnetic properties in coexistence of ferroelectric and ferrimagnetic states, which can be used in antennas of micro tapes and selective surfaces of low frequency in a range of miniaturized microwaves, without performance loss. The obtainment occurred through the combustion process, followed by appropriate physical processes and ordered to the utilization of the substrate sinterization process, it gave us a ceramic material, of high purity degree in a nanometric scale. The Vibrating Sample Magnetometer (VSM) analysis showed that those ferritic materials presents parameters, as materials hysteresis, that have own behavior of magnetic materials of good quality, in which the magnetization states can be suddenly changed with a relatively small variation of the field intensity, having large applications on the electronics field. The X-ray Diffraction (XRD) analysis of the ceramic powders synthesized at 900 °C, characterize its structural and geometrical properties, the crystallite size and the interplanar spacing. Other analysis were developed, as Scanning Electron Microscopy (SEM), X-ray Fluorescence (XRF), electric permittivity and the tangent loss, in high frequencies, through the equipment ZVB - 14 Vector Network Analyzer 10 MHz-14 GHz, of ROHDE & SCHWART.
Resumo:
Agriculture is an essential activity to the human development, the tendency is that their need to increase according to the increase in world population. It is very important to take the maximum performance that is possible of each land without degrading it, a frequently monitoring is essential for the best performance. The purpose of this work is, nondestructively, to monitor the surface electrical conductivity of the soil in a demarcated area, as on a plantation, using low frequency radio waves. The conductivity is directly linked to the amount of water in the area and nutrients, therefore a periodic or even permanent monitoring increases significantly the efficient of the use of the soil. They will be used long-wave radio transmission or medium whose main characteristic to spread over the surface of the earth. It is possible to choose an AM radio with location, frequency and power of the transmission known or generate the signal. The studied method computes the conductivity of the ground in a straight line between two measured points, so it can be used in smaller or larger size fields. Measurements were carried out using an electromagnetic field strength analyzer. The data obtained in the measurements are processed by a numerical calculation program, in our case Matlab. It is concluded that the recommendations of the ITU (International Telecommunication Union) on the conductivity of soil in Brazil is far from reality, on some routes the recommendations indicate the use of the electrical conductivity of the soil 1 mS/m, while the measurements was found 19 mS/m. With the method described a precision farmer, once initial research for about a year, can monitor the humidity and salinity of the land, with the ability to predict the area and the most suitable time for irrigation and fertilization, making management more efficient and less expensive, while optimizing water use, natural resource increasingly precious.