1000 resultados para Linear infrastructures
Resumo:
1998
Resumo:
A presente aplicacao da funcao discriminante linear na classificacao de fatores que determinam o exodo rural foi realizada a partir dos dados coletados em pequenas propriedades na regiao de Ouricuri, no alto sertao de Pernambuco. Dentro do complexo de problemas que condicionam o exodo rural foi escolhido um conjunto de variaveis que explicariam o fenomeno. Estas variaveis foram estudadas em duas populacoes (com exodo rural e sem exodo), para verificar em que grau se explica esse fenomeno. O objetivo do trabalho consistiu em testar instrumentos tecnicos e metodos estatisticos sobre problemas socio-economicos que possam ser usados posteriormente pelos orgaos de desenvolvimento.
Resumo:
Background: Conventional coronary artery bypass grafting (C-CABG) and off-pump CABG (OPCAB) surgery may produce different patients' outcomes, including the extent of cardiac autonomic (CA) imbalance. the beneficial effects of an exercise-based inpatient programme on heart rate variability (HRV) for C-CABG patients have already been demonstrated by our group. However, there are no studies about the impact of a cardiac rehabilitation (CR) on HRV behaviour after OPCAB. the aim of this study is to compare the influence of both operative techniques on HRV pattern following CR in the postoperative (PO) period.Methods: Cardiac autonomic function was evaluated by HRV indices pre- and post-CR in patients undergoing C-CABG (n = 15) and OPCAB (n = 13). All patients participated in a short-term(approximately 5 days) supervised CR programme of early mobilization, consisting of progressive exercises, from active-assistive movements at PO day 1 to climbing flights of stairs at PO day 5.Results: Both groups demonstrated a reduction in HRV following surgery. the CR programme promoted improvements in HRV indices at discharge for both groups. the OPCAB group presented with higher HRV values at discharge, compared to the C-CABG group, indicating a better recovery of CA function.Conclusion: Our data suggest that patients submitted to OPCAB and an inpatient CR programme present with greater improvement in CA function compared to C-CABG.
Resumo:
Lee M.H., Qualitative Modelling of Linear Networks in Engineering Applications, in Proc. ECAI?2000, 14th European Conf. on Artificial Intelligence, Berlin, August 19th - 25th 2000, pp161-5.
Resumo:
Lee M.H., Qualitative Modelling of Linear Networks in ECAD Applications, Expert Update, Vol. 3, Num. 2, pp23-32, BCS SGES, Summer 2000. Qualitative modeling of linear networks in ecad applications (1999) by M Lee Venue: Pages 146?152 of: Proceedings 13th international workshop on qualitative reasoning, QR ?99
Resumo:
Lee M.H., Qualitative Modelling of Linear Networks in ECAD Applications, Proc. 13th Int. Workshop on Qualitative Reasoning, (QR'99), Loch Awe, Scotland, 1999, pp146-52.
Resumo:
R. Zwiggelaar, S.M. Astley, C.J. Taylor and C.R.M. Boggis, 'Linear structures in mammographic images: detection and classification', IEEE Transaction on Medical Imaging 23 (9), 1077-1086 (2004)
Resumo:
R. Marti, R. Zwiggelaar, C.M.E. Rubin, 'Automatic point correspondence and registration based on linear structures', International Journal of Pattern Recognition and Artificial Intelligence 16 (3), 331-340 (2002)
Resumo:
We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non-trivial but essentially solvable models for the phenomenon of mode-locking and the quasi-periodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non-zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low-order spline approximations to the classic ``sine-circle'' map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction.
Resumo:
Oceanic bubble plumes caused by ship wakes or breaking waves disrupt sonar communi- cation because of the dramatic change in sound speed and attenuation in the bubbly fluid. Experiments in bubbly fluids have suffered from the inability to quantitatively characterize the fluid because of continuous air bubble motion. Conversely, single bubble experiments, where the bubble is trapped by a pressure field or stabilizing object, are limited in usable frequency range, apparatus complexity, or the invasive nature of the stabilizing object (wire, plate, etc.). Suspension of a bubble in a viscoelastic Xanthan gel allows acoustically forced oscilla- tions with negligible translation over a broad frequency band. Assuming only linear, radial motion, laser scattering from a bubble oscillating below, through, and above its resonance is measured. As the bubble dissolves in the gel, different bubble sizes are measured in the range 240 – 470 μm radius, corresponding to the frequency range 6 – 14 kHz. Equalization of the cell response in the raw data isolates the frequency response of the bubble. Compari- son to theory for a bubble in water shows good agreement between the predicted resonance frequency and damping, such that the bubble behaves as if it were oscillating in water.
Resumo:
The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. The model structure setup and parameter learning are done using a variational Bayesian approach, which enables automatic Bayesian model structure selection, hence solving the problem of over-fitting. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.
Resumo:
Statistical properties offast-slow Ellias-Grossberg oscillators are studied in response to deterministic and noisy inputs. Oscillatory responses remain stable in noise due to the slow inhibitory variable, which establishes an adaptation level that centers the oscillatory responses of the fast excitatory variable to deterministic and noisy inputs. Competitive interactions between oscillators improve the stability in noise. Although individual oscillation amplitudes decrease with input amplitude, the average to'tal activity increases with input amplitude, thereby suggesting that oscillator output is evaluated by a slow process at downstream network sites.
Resumo:
The origin of the tri-phasic burst pattern, observed in the EMGs of opponent muscles during rapid self-terminated movements, has been controversial. Here we show by computer simulation that the pattern emerges from interactions between a central neural trajectory controller (VITE circuit) and a peripheral neuromuscularforce controller (FLETE circuit). Both neural models have been derived from simple functional constraints that have led to principled explanations of a wide variety of behavioral and neurobiological data, including, as shown here, the generation of tri-phasic bursts.
Resumo:
In this paper, two methods for constructing systems of ordinary differential equations realizing any fixed finite set of equilibria in any fixed finite dimension are introduced; no spurious equilibria are possible for either method. By using the first method, one can construct a system with the fewest number of equilibria, given a fixed set of attractors. Using a strict Lyapunov function for each of these differential equations, a large class of systems with the same set of equilibria is constructed. A method of fitting these nonlinear systems to trajectories is proposed. In addition, a general method which will produce an arbitrary number of periodic orbits of shapes of arbitrary complexity is also discussed. A more general second method is given to construct a differential equation which converges to a fixed given finite set of equilibria. This technique is much more general in that it allows this set of equilibria to have any of a large class of indices which are consistent with the Morse Inequalities. It is clear that this class is not universal, because there is a large class of additional vector fields with convergent dynamics which cannot be constructed by the above method. The easiest way to see this is to enumerate the set of Morse indices which can be obtained by the above method and compare this class with the class of Morse indices of arbitrary differential equations with convergent dynamics. The former set of indices are a proper subclass of the latter, therefore, the above construction cannot be universal. In general, it is a difficult open problem to construct a specific example of a differential equation with a given fixed set of equilibria, permissible Morse indices, and permissible connections between stable and unstable manifolds. A strict Lyapunov function is given for this second case as well. This strict Lyapunov function as above enables construction of a large class of examples consistent with these more complicated dynamics and indices. The determination of all the basins of attraction in the general case for these systems is also difficult and open.
Resumo:
We wish to construct a realization theory of stable neural networks and use this theory to model the variety of stable dynamics apparent in natural data. Such a theory should have numerous applications to constructing specific artificial neural networks with desired dynamical behavior. The networks used in this theory should have well understood dynamics yet be as diverse as possible to capture natural diversity. In this article, I describe a parameterized family of higher order, gradient-like neural networks which have known arbitrary equilibria with unstable manifolds of known specified dimension. Moreover, any system with hyperbolic dynamics is conjugate to one of these systems in a neighborhood of the equilibrium points. Prior work on how to synthesize attractors using dynamical systems theory, optimization, or direct parametric. fits to known stable systems, is either non-constructive, lacks generality, or has unspecified attracting equilibria. More specifically, We construct a parameterized family of gradient-like neural networks with a simple feedback rule which will generate equilibrium points with a set of unstable manifolds of specified dimension. Strict Lyapunov functions and nested periodic orbits are obtained for these systems and used as a method of synthesis to generate a large family of systems with the same local dynamics. This work is applied to show how one can interpolate finite sets of data, on nested periodic orbits.