1000 resultados para Life preservers.
Resumo:
The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed.
Resumo:
Starvation during early development can have lasting effects that influence organismal fitness and disease risk. We characterized the long-term phenotypic consequences of starvation during early larval development in Caenorhabditis elegans to determine potential fitness effects and develop it as a model for mechanistic studies. We varied the amount of time that larvae were developmentally arrested by starvation after hatching ("L1 arrest"). Worms recovering from extended starvation grew slowly, taking longer to become reproductive, and were smaller as adults. Fecundity was also reduced, with the smallest individuals most severely affected. Feeding behavior was impaired, possibly contributing to deficits in growth and reproduction. Previously starved larvae were more sensitive to subsequent starvation, suggesting decreased fitness even in poor conditions. We discovered that smaller larvae are more resistant to heat, but this correlation does not require passage through L1 arrest. The progeny of starved animals were also adversely affected: Embryo quality was diminished, incidence of males was increased, progeny were smaller, and their brood size was reduced. However, the progeny and grandprogeny of starved larvae were more resistant to starvation. In addition, the progeny, grandprogeny, and great-grandprogeny were more resistant to heat, suggesting epigenetic inheritance of acquired resistance to starvation and heat. Notably, such resistance was inherited exclusively from individuals most severely affected by starvation in the first generation, suggesting an evolutionary bet-hedging strategy. In summary, our results demonstrate that starvation affects a variety of life-history traits in the exposed animals and their descendants, some presumably reflecting fitness costs but others potentially adaptive.
Resumo:
Mitochondria are responsible for producing the vast majority of cellular ATP, and are therefore critical to organismal health [1]. They contain thir own genomes (mtDNA) which encode 13 proteins that are all subunits of the mitochondrial respiratory chain (MRC) and are essential for oxidative phosphorylation [2]. mtDNA is present in multiple copies per cell, usually between 103 and 104 , though this number is reduced during certain developmental stages [3, 4]. The health of the mitochondrial genome is also important to the health of the organism, as mutations in mtDNA lead to human diseases that collectively affect approximately 1 in 4000 people [5, 6]. mtDNA is more susceptible than nuclear DNA (nucDNA) to damage by many environmental pollutants, for reasons including the absence of Nucleotide Excision Repair (NER) in the mitochondria [7]. NER is a highly functionally conserved DNA repair pathway that removes bulky, helix distorting lesions such as those caused by ultraviolet C (UVC) radiation and also many environmental toxicants, including benzo[a]pyrene (BaP) [8]. While these lesions cannot be repaired, they are slowly removed through a process that involves mitochondrial dynamics and autophagy [9, 10]. However, when present during development in C. elegans, this damage reduces mtDNA copy number and ATP levels [11]. We hypothesize that this damage, when present during development, will result in mitochondrial dysfunction and increase the potential for adverse outcomes later in life.
To test this hypothesis, 1st larval stage (L1) C. elegans are exposed to 3 doses of 7.5J/m2 ultraviolet C radiation 24 hours apart, leading to the accumulation of mtDNA damage [9, 11]. After exposure, many mitochondrial endpoints are assessed at multiple time points later in life. mtDNA and nucDNA damage levels and genome copy numbers are measured via QPCR and real-time PCR , respectively, every 2 day for 10 days. Steady state ATP levels are measured via luciferase expressing reporter strains and traditional ATP extraction methods. Oxygen consumption is measured using a Seahorse XFe24 extra cellular flux analyzer. Gene expression changes are measured via real time PCR and targeted metabolomics via LC-MS are used to investigate changes in organic acid, amino acid and acyl-carnitine levels. Lastly, nematode developmental delay is assessed as growth, and measured via imaging and COPAS biosort.
I have found that despite being removed, UVC induced mtDNA damage during development leads to persistent deficits in energy production later in life. mtDNA copy number is permanently reduced, as are ATP levels, though oxygen consumption is increased, indicating inefficient or uncoupled respiration. Metabolomic data and mutant sensitivity indicate a role for NADPH and oxidative stress in these results, and exposed nematodes are more sensitive to the mitochondrial poison rotenone later in life. These results fit with the developmental origin of health and disease hypothesis, and show the potential for environmental exposures to have lasting effects on mitochondrial function.
Lastly, we are currently working to investigate the potential for irreparable mtDNA lesions to drive mutagenesis in mtDNA. Mutations in mtDNA lead to a wide range of diseases, yet we currently do not understand the environmental component of what causes them. In vitro evidence suggests that UVC induced thymine dimers can be mutagenic [12]. We are using duplex sequencing of C. elegans mtDNA to determine mutation rates in nematodes exposed to our serial UVC protocol. Furthermore, by including mutant strains deficient in mitochondrial fission and mitophagy, we hope to determine if deficiencies in these processes will further increase mtDNA mutation rates, as they are implicated in human diseases.
Resumo:
Subteratogenic and other low-level chronic exposures to toxicant mixtures are an understudied threat to environmental and human health. It is especially important to understand the effects of these exposures for contaminants, such as polycyclic aromatic hydrocarbons (PAHs) a large group of more than 100 individual compounds, which are important environmental (including aquatic) contaminants. Aquatic sediments constitute a major sink for hydrophobic pollutants, and studies show PAHs can persist in sediments over time. Furthermore, estuarine systems (namely breeding grounds) are of particular concern, as they are highly impacted by a wide variety of pollutants, and estuarine fishes are often exposed to some of the highest levels of contaminants of any vertebrate taxon. Acute embryonic exposure to PAHs results in cardiac teratogenesis in fish, and early life exposure to certain individual PAHs and PAH mixtures cause heart alterations with decreased swimming capacity in adult fish. Consequently, the heart and cardiorespiratory system are thought to be targets of PAH mixture exposure. While many studies have investigated acute, teratogenic PAH exposures, few studies have longitudinally examined the impacts of subtle, subteratogenic PAH mixture exposures, which are arguably more broadly applicable to environmental contamination scenarios. The goal of this dissertation was to highlight the later-life consequences of early-life exposure to subteratogenic concentrations of a complex, environmentally relevant PAH mixture.
A unique population of Fundulus heteroclitus (the Atlantic killifish or mummichog, hereafter referred to as killifish), has adapted to creosote-based polycyclic aromatic hydrocarbons (PAHs) found at the Atlantic Wood Industries (AW) Superfund site in the southern branch of the Elizabeth River, VA, USA. This killifish population survives in a site heavily contaminated with a mixture of PAHs from former creosote operations. They have developed resistance to the acute toxicity and teratogenic effects caused by the mixture of PAHs in sediment from the site. The primary goal of this dissertation was to compare and contrast later-life outcomes of early-life, subteratogenic PAH mixture exposure in both the Atlantic Wood killifish (AW) and a naïve reference population of killifish from King’s Creek (KC; a relatively uncontaminated tributary of the Severn River, VA). Killifish from both populations were exposed to subteratogenic concentrations of a complex PAH-sediment extract, Elizabeth River Sediment Extract (ERSE), made by collecting sediment from the AW site. Fish were reared over a 5-month period in the laboratory, during which they were examined for a variety of molecular, physiological and behavioral responses.
The central aims of my dissertation were to determine alterations to embryonic gene expression, larval swimming activity, adult behavior, heart structure, enzyme activity, and swimming/cardiorespiratory performance following subteratogenic exposure to ERSE. I hypothesized that subteratogenic exposure to ERSE would impair cardiac ontogenic processes in a way that would be detectable via gene expression in embryos, and that the misregulation of cardiac genes would help to explain activity changes, behavioral deficits, and later-life swimming deficiencies. I also hypothesized that fish heart structure would be altered. In addition, I hypothesized that the AW killifish population would be resistant to developmental exposures and perform normally in later life challenges. To investigate these hypotheses, a series of experiments were carried out in PAH-adapted killifish from Elizabeth River and in reference killifish. As an ancillary project to the primary aims of the dissertation, I examined the toxicity of weaker aryl hydrocarbon receptor (AHR) agonists in combination with fluoranthene (FL), an inhibitor of cytochrome P4501A1 (CYP1A1). This side project was conducted in both Danio rerio (zebrafish) and the KC and AW killifish.
Embryonic gene expression was measured in both killifish populations over an ERSE dose response with multiple time points (12, 24, 48, and 144 hours post exposure). Genes known to play critical roles in cardiac structure/development, cardiac function, and angiogenesis were elevated, indicating cardiac damage and activation of cardiovascular repair mechanisms. These data helped to inform later-life swimming performance and cardiac histology studies. Behavior was assessed during light and dark cycles in larvae of both populations following developmental exposure to ERSE. While KC killifish showed activity differences following exposure, AW killifish showed no significant changes even at concentrations that would cause overt cardiac toxicity in KC killifish. Juvenile behavior experiments demonstrated hyperactivity following ERSE exposure in KC killifish, but no significant behavioral changes in AW killifish. Adult swimming performance via prolonged critical swimming capacity (Ucrit) demonstrated performance costs in the AW killifish. Furthermore, swimming performance decline was observed in KC killifish following exposure to increasing dilutions of ERSE. Lastly, cardiac histology suggested that early-life exposure to ERSE could result in cardiac structural alteration and extravasation of blood into the pericardial cavity.
Responses to AHR agonists resulted in a ranking of relative potency for agonists, and determined which agonists, when combined with FL, caused cardiac teratogenesis. These experiments showed interesting species differences for zebrafish and killifish. To probe mechanisms responsible for cardiotoxicity, a CYP1A-morpholino and a AHR2-morpholino were used to mimic FL effects or attempt to rescue cardiac deformities respectively. Findings suggested that the cardiac toxicity elicited by weak agonist + FL exposure was likely driven by AHR-independent mechanisms. These studies stand in contrast to previous research from our lab showing that moderate AHR agonist + FL caused cardiac toxicity that can be partially rescued by AHR-morpholino knockdown.
My findings will form better characterization of mechanisms of PAH toxicity, and advance our understanding of how subteratogenic mixtures of PAHs exert their toxic action in naïve killifish. Furthermore, these studies will provide a framework for investigating how subteratogenic exposures to PAH mixtures can impact aquatic organismal health and performance. Most importantly, these experiments have the potential to help inform risk assessment in fish, mammals, and potentially humans. Ultimately, this research will help protect populations exposed to subtle PAH-contamination.
Resumo:
PURPOSE: Detoxification often serves as an initial contact for treatment and represents an opportunity for engaging patients in aftercare to prevent relapse. However, there is limited information concerning clinical profiles of individuals seeking detoxification, and the opportunity to engage patients in detoxification for aftercare often is missed. This study examined clinical profiles of a geographically diverse sample of opioid-dependent adults in detoxification to discern the treatment needs of a growing number of women and whites with opioid addiction and to inform interventions aimed at improving use of aftercare or rehabilitation. METHODS: The sample included 343 opioid-dependent patients enrolled in two national multi-site studies of the National Drug Abuse Treatment Clinical Trials Network (CTN001-002). Patients were recruited from 12 addiction treatment programs across the nation. Gender and racial/ethnic differences in addiction severity, human immunodeficiency virus (HIV) risk, and quality of life were examined. RESULTS: Women and whites were more likely than men and African Americans to have greater psychiatric and family/social relationship problems and report poorer health-related quality of life and functioning. Whites and Hispanics exhibited higher levels of total HIV risk scores and risky injection drug use scores than African Americans, and Hispanics showed a higher level of unprotected sexual behaviors than whites. African Americans were more likely than whites to use heroin and cocaine and to have more severe alcohol and employment problems. CONCLUSIONS: Women and whites show more psychopathology than men and African Americans. These results highlight the need to monitor an increased trend of opioid addiction among women and whites and to develop effective combined psychosocial and pharmacologic treatments to meet the diverse needs of the expanding opioid-abusing population. Elevated levels of HIV risk behaviors among Hispanics and whites also warrant more research to delineate mechanisms and to reduce their risky behaviors.
Resumo:
Mitchell et al. argue that divergence-time estimates for our avian phylogeny were too young because of an "inappropriate" maximum age constraint for the most recent common ancestor of modern birds and that, as a result, most modern bird orders diverged before the Cretaceous-Paleogene mass extinction event 66 million years ago instead of after. However, their interpretations of the fossil record and timetrees are incorrect.
Resumo:
BACKGROUND: Anticoagulation can reduce quality of life, and different models of anticoagulation management might have different impacts on satisfaction with this component of medical care. Yet, to our knowledge, there are no scales measuring quality of life and satisfaction with anticoagulation that can be generalized across different models of anticoagulation management. We describe the development and preliminary validation of such an instrument - the Duke Anticoagulation Satisfaction Scale (DASS). METHODS: The DASS is a 25-item scale addressing the (a) negative impacts of anticoagulation (limitations, hassles and burdens); and (b) positive impacts of anticoagulation (confidence, reassurance, satisfaction). Each item has 7 possible responses. The DASS was administered to 262 patients currently receiving oral anticoagulation. Scales measuring generic quality of life, satisfaction with medical care, and tendency to provide socially desirable responses were also administered. Statistical analysis included assessment of item variability, internal consistency (Cronbach's alpha), scale structure (factor analysis), and correlations between the DASS and demographic variables, clinical characteristics, and scores on the above scales. A follow-up study of 105 additional patients assessed test-retest reliability. RESULTS: 220 subjects answered all items. Ceiling and floor effects were modest, and 25 of the 27 proposed items grouped into 2 factors (positive impacts, negative impacts, this latter factor being potentially subdivided into limitations versus hassles and burdens). Each factor had a high degree of internal consistency (Cronbach's alpha 0.78-0.91). The limitations and hassles factors consistently correlated with the SF-36 scales measuring generic quality of life, while the positive psychological impact scale correlated with age and time on anticoagulation. The intra-class correlation coefficient for test-retest reliability was 0.80. CONCLUSIONS: The DASS has demonstrated reasonable psychometric properties to date. Further validation is ongoing. To the degree that dissatisfaction with anticoagulation leads to decreased adherence, poorer INR control, and poor clinical outcomes, the DASS has the potential to help identify reasons for dissatisfaction (and positive satisfaction), and thus help to develop interventions to break this cycle. As an instrument designed to be applicable across multiple models of anticoagulation management, the DASS could be crucial in the scientific comparison between those models of care.
Resumo:
In humans and other animals, harsh circumstances in early life predict morbidity and mortality in adulthood. Multiple adverse conditions are thought to be especially toxic, but this hypothesis has rarely been tested in a prospective, longitudinal framework, especially in long-lived mammals. Here we use prospective data on 196 wild female baboons to show that cumulative early adversity predicts natural adult lifespan. Females who experience ≥3 sources of early adversity die a median of 10 years earlier than females who experience ≤1 adverse circumstances (median lifespan is 18.5 years). Females who experience the most adversity are also socially isolated in adulthood, suggesting that social processes partially explain the link between early adversity and adult survival. Our results provide powerful evidence for the developmental origins of health and disease and indicate that close ties between early adversity and survival arise even in the absence of health habit and health care-related explanations.
Resumo:
All biological phenomena depend on molecular recognition, which is either intermolecular like in ligand binding to a macromolecule or intramolecular like in protein folding. As a result, understanding the relationship between the structure of proteins and the energetics of their stability and binding with others (bio)molecules is a very interesting point in biochemistry and biotechnology. It is essential to the engineering of stable proteins and to the structure-based design of pharmaceutical ligands. The parameter generally used to characterize the stability of a system (the folded and unfolded state of the protein for example) is the equilibrium constant (K) or the free energy (deltaG(o)), which is the sum of enthalpic (deltaH(o)) and entropic (deltaS(o)) terms. These parameters are temperature dependent through the heat capacity change (deltaCp). The thermodynamic parameters deltaH(o) and deltaCp can be derived from spectroscopic experiments, using the van't Hoff method, or measured directly using calorimetry. Along with isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) is a powerful method, less described than ITC, for measuring directly the thermodynamic parameters which characterize biomolecules. In this article, we summarize the principal thermodynamics parameters, describe the DSC approach and review some systems to which it has been applied. DSC is much used for the study of the stability and the folding of biomolecules, but it can also be applied in order to understand biomolecular interactions and can thus be an interesting technique in the process of drug design.
Resumo:
We attempt to construct a unified evolutionary scheme that includes post-AGB systems, barium stars, symbiotics and related systems, explaining their similarities as well as their differences. Special attention is given to the comparison of the barium pollution and symbiotic phenomena. Finally, we outline a 'transient torus' evolutionary scenario that makes use of the various observational and theoretical hints and aims at explaining the observed characteristics of the relevant systems.
Resumo:
Most studies on the environmental performance of buildings focus on energy demand and associated greenhouse gas emissions. They often neglect to consider the range of other resource demands and environmental impacts associated with buildings, including water. Studies that assess water use in buildings typically consider only operational water, which excludes the embodied water in building materials or the water associated with the mobility of building occupants. A new framework is presented that quantifies water requirements at the building scale (i.e. the embodied and operational water of the building as well as its maintenance and refurbishment) and at the city scale (i.e. the embodied water of nearby infrastructures such as roads, gas distribution and others) and the transport-related indirect water use of building occupants. A case study house located in Melbourne, Australia, is analysed using the new framework. The results show that each of the embodied, operational and transport requirements is nearly equally important. By integrating these three water requirements, the developed framework provides architects, building designers, planners and decision-makers with a powerful means to understand and effectively reduce the overall water use and associated environmental impacts of residential buildings.
Resumo:
This paper describes how modeling technology has been used in providing fatigue life time data of two flip-chip models. Full-scale three-dimensional modeling of flip-chips under cyclic thermal loading has been combined with solder joint stand-off height prediction to analyze the stress and strain conditions in the two models. The Coffin-Manson empirical relationship is employed to predict the fatigue life times of the solder interconnects. In order to help designers in selecting the underfill material and the printed circuit board, the Young's modulus and the coefficient of thermal expansion of the underfill, as well as the thickness of the printed circuit boards are treated as variable parameters. Fatigue life times are therefore calculated over a range of these material and geometry parameters. In this paper we will also describe how the use of micro-via technology may affect fatigue life
Resumo:
A new approach to the prediction of bend lifetime in pneumatic conveyors, subject to erosive wear is described. Mathematical modelling is exploited. Commercial Computational Fluid Dynamics (CFD) software is used for the prediction of air flow and particle tracks, and custom code for the modelling of bend erosion and lifetime prediction. The custom code uses a toroidal geometry, and employs a range of empirical data rather than trying to fit classical erosion models to a particular circumstance. The data used was obtained relatively quickly and easily from a gas-blast erosion tester. A full-scale pneumatic conveying rig was used to validate a sample of the bend lifetime predictions, and the results suggest accuracy of within ±65%, using calibration methods. Finally, the work is distilled into user-friendly interactive software that will make erosion lifetime predictions for a wide range of bends under varying conveying conditions. This could be a valuable tool for the pneumatic conveyor design or maintenance engineer.
Resumo:
Book reviews of: [1] Nicholas Crane, Mercator: The Man Who Mapped the Planet, London: Weidenfield and Nicolson, 2002, £20, ISBN: 0297646656. [2] Stephen Inwood: The Man Who Knew Too Much: The Strange and Inventive Life of Robert Hooke (1635-1703), London: Macmillan, 2002, £18.99, ISBN: 0333782860.