1000 resultados para Landfill soil
Resumo:
The forest succession after abandonment of slash-and-burn agriculture over calcareous soil in Brazilian Atlantic Forest was assessed. This is one of the world's most threatened Biome, with only 8% remaining. The study area is located over calcareous soil inside the Alto Ribeira Touristic State Park (PETAR), southeast Brazil. The phytossociological survey showed a successional pattern dominated by species of Leguminosae, especially Piptadenia gonoacantha (Mart.) J.F. Macbr. This species occurs in calcareous soils as a substitute of Tibouchina pulchra (Cham.) Cogn. (Melastomataceae) that is the most usual dominant tree species in early succession over acidic soil, which is the most common situation in this Biome. These results are important for a better understanding of Neotropical forest biodiversity and characterize a unique genetic bank in this highly endangered Biome. They are also decisive to support actions regarding rehabilitation of degraded lands and a potential tool for Neotropical forest sustainable management, both inside and around the conservation unit.
Resumo:
The sustainable management of municipal solid waste in the Kathmandu Valley has always been a challenging task. Solid waste generation has gone rapidly high in the Kathmandu Valley over the last decade due to booming population and rapid urbaniza-tion. Finding appropriate landfill sites for the disposal of solid wastes generated from the households of the Kathmandu Valley has always been a major problem for Nepalese government. 65 % of total generated wastes from the households of Nepal consist of organic materials. As large fractions of generated household wastes are organic in na-ture, composting can be considered as one of the best sustainable ways to recycle organ-ic wastes generated from the households of Nepal. Model Community Society Development (MCDS), a non-governmental organization of Nepal carried out its small-scale project in five households of the Kathmandu Valley by installing composting reactors. This thesis is based on this small-scale project and has used secondary data provided by MCDS Nepal for carrying out the study. Proper man-agement of organic wastes can be done at household levels through the use of compost-ing reactors. The end product compost can be used as soil conditioners for agricultural purposes such as organic farming, roof-top farming and gardening. The overall average organic waste generation in the Kathmandu Valley is found to be 0,23 kg/person/day and the total amount of organic household wastes generated in the Kathmandu Valley is around 210 Gg/yr. Produced composts from five composting reac-tors contain high amount of moistures but have sufficient amount of nutrients required for the fertility of land and plant growth. Installation of five composting reactors in five households have prevented 2,74 Mg of organic wastes going into the landfills, thus re-ducing 107 kg of methane emissions which is equivalent to 2,7 Mg of carbondioxide.
Resumo:
Soil islands on rocky surfaces often harbor aggregated vegetation that consists of insular plant communities. These islands are typical of the rocky outcrops and in various parts of Brazil form the so-called "campos rupestres" vegetation. Four of such sites have been selected in the state of Bahia, Northeast Brazil, for this comparative study on floristics and vegetation structure: three areas situated inside the "Parque Nacional da Chapada Diamantina" (Guiné, Fumaça and "Gerais da Fumaça") and one is at the border of the Environmental Protection Area of "Marimbus-Iraquara" ("Mãe Inácia"). All occurring vegetation islands were studied in four random plots of 10 × 10 m per site. Soil was often shallow, sandy and acidic. Vascular plant species were determined, with respective life forms and canopy coverage areas. The total number of species when all four sites were added was 135, and the number of species per island varied from 2 to 32. The areas of the 214 soil islands varied from 0.015 to 91.9 m², totaling 568 m² in the four sites. Monocotyledon families were dominant, essentially Velloziaceae, as well as Orchidaceae, Bromeliaceae, Amaryllidaceae and Cyperaceae. Among the eudicotyledons, dominant families were mainly Clusiaceae, Asteraceae and Melastomataceae. The biological spectra revealed that phanerophytes and hemicryptophytes predominated among the life forms, while chamaephytes had the largest coverage area. Epilithic and desiccant chamaephytes composed the most conspicuous interspecific associations, and were probably related to early successional processes. Sites closest to one another were not the most similar in structure, indicating that other factors more relevant than distance might be involved in the abundance of species in space.
Resumo:
Ferruginous "campos rupestres" are a particular type of vegetation growing on iron-rich primary soils. We investigated the influence of soil properties on plant species abundance at two sites of ferruginous "campos rupestres" and one site of quartzitic "campo rupestre", all of them in "Quadrilátero Ferrífero", in Minas Gerais State, southeastern Brazil. In each site, 30 quadrats were sampled to assess plant species composition and abundance, and soil samples were taken to perform chemical and physical analyses. The analyzed soils are strongly acidic and presented low fertility and high levels of metallic cations; a principal component analysis of soil data showed a clear segregation among sites due mainly to fertility and heavy metals content, especially Cu, Zn, and Pb. The canonical correspondence analysis indicated a strong correlation between plant species abundance and soil properties, also segregating the sites.
Resumo:
Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.
Resumo:
Tässä työssä tutkitaan suotoveden käsittelyä käyttämällä sitä kierrätysmateriaaleista valmistetussa tuhkamullassa loppusijoitusalueen päällä kasvatettavan energiapuukasvuston kasteluun. Kyseisen toimintamallin tarkoituksena on haihduttaa suotovettä energiapuiden avulla sekä sitouttaa ravinteita ja haitta-aineita sekä kasvustoon että kasvualustaan. Tavoitteena on selvittää toimintamallin hyödyntämiskelpoisuus ja tehokkuus suotovesien käsittelymenetelmänä sekä kastelun vaikutukset energiapuun kasvuun. Työssä suoritettiin kesän ja syksyn 2014 aikana energiapuun kastelukoe Mustankorkea Oy:n jätteenkäsittelykeskuksen alueella Jyväskylässä. Kokeessa loppusijoitusalueen päälle istutettuja eri kasvuvaiheissa olevia energiapajukasvustoja sekä hybridihaapakasvustoa kasteltiin jätetäytön suotovedellä. Kokeessa käytettiin kasvualustoina tuhkamultaa, joka oli valmistettu tuhkasta, kompostista ja ylijäämämaa- aineksesta, sekä kompostia. Kasteluveden, valumavesien, kasvualustojen ja pajukasvuston ominaisuuksia seurattiin kokeen aikana analyysien avulla. Lisäksi alueen vesitaseen selvittämiseksi suoritettiin lysimetrikokeet, joissa lysimetreihin istutettuja pajuja kasteltiin suotovedellä sekä hanavedellä. Tulosten perusteella suotovesikastelu lisäsi sekä pajun että haavan kasvua. Kastelu lisäsi pajun ravinnepitoisuuksia. Se myös heikensi hieman pajun poltto-ominaisuuksia. Kasvualustan ominaisuuksiin kastelulla ei havaittu olevan vaikutuksia. Kastelumäärä, jota voidaan käyttää ilman valumia, on kokeen perusteella n. 100–600 mm/kasvukausi käytetyllä kastelujärjestelmällä. Kastelujärjestelmää kehittämällä on kuitenkin luultavasti mahdollista lisätä haihduntaa ja siten kastelumäärää merkittävästi.
Resumo:
Sugarcane is an important agricultural product of Brazil, with a total production of more than 500 million tons. Knowledge of the bacterial community associated with agricultural crops and the soil status is a decisive step towards understanding how microorganisms influence crop productivity. However, most studies aim to isolate endophytic or rhizosphere bacteria associated with the plant by culture-dependent approaches. Culture-independent approaches allow a more comprehensive view of entire bacterial communities in the environment. In the present study, we have used this approach to assess the bacterial community in the rhizosphere soil of sugarcane at different times and under different nitrogen fertilization conditions. At the high taxonomic level, few differences between samples were observed, with the phylum Proteobacteria (29.6%) predominating, followed by Acidobacteria (23.4%), Bacteroidetes (12.1%), Firmicutes (10.2%), and Actinobacteria (5.6%). The exception was the Verrucomicrobia phylum whose prevalence in N-fertilized soils was approximately 0.7% and increased to 5.2% in the non-fertilized soil, suggesting that this group may be an indicator of nitrogen availability in soils. However, at low taxonomic levels a higher diversity was found associated with plants receiving nitrogen fertilizer. Bacillus was the most predominant genus, accounting for 19.7% of all genera observed. Classically reported nitrogen-fixing and/or plant growth-promoting bacterial genera, such as Azospirillum, Rhizobium, Mesorhizobium, Bradyrhizobium, and Burkholderia were also found although at a lower prevalence.
Resumo:
The purpose of this thesis was to investigate environmental permits of landfills with respect to the appropriateness of risk assessments focusing on contaminant migration, structures capable to protect the environment, waste and leachate management and existing environmental impacts of landfills. According to the requirements, a risk assessment is always required to demonstrate compliance with environmental protection requirements if the environmental permit decision deviates from the set requirements. However, there is a reason to doubt that all relevant risk factors are identified in current risk assessment practices in order to protect people end environment. In this dissertation, risk factors were recognized in 12 randomly selected landfills. Based on this analysis, a structural risk assessment method was created. The method was verified with two case examples. Several development needs were found in the risk assessments of the environmental permit decisions. The risk analysis equations used in the decisions did not adequately take into account all the determining factors like waste prospects, total risk quantification or human delineated factors. Instead of focusing on crucial factors, the landfill environmental protection capability is simply expressed via technical factors like hydraulic conductivity. In this thesis, it could be shown, that using adequate risk assessment approaches the most essential environmental impacts can be taken into account by consideration of contaminant transport mechanisms, leachate effects, and artificial landfill structures. The developed structural risk analysing (SRA) method shows, that landfills structures could be designed in a more cost-efficient way taking advantage of recycled or by-products. Additionally, the research results demonstrate that the environmental protection requirements of landfills should be updated to correspond to the capability to protect the environment instead of the current simplified requirements related to advective transport only.
Resumo:
The high demands for sugars and the development of enzymatic technology have increased the production of sweeteners, especially for glucose and fructose syrups. This work describe a technology for glucose and fructose syrups from Brazilian cassava starch using enzymes produced by soil microrganisms isolated from the Brazilian Cerrado soil. Firstly, Aspergillus niger and Streptomyces sp. were isolated from the soil and used as glucoamylase (GA) and glucose isomerase (GI) producer sources. After characterization, GA and GI exhibited optimum pH 4.5 and 8.0, respectively. GA showed maximum activity at 60 ºC and GI at 85 ºC. GA and GI retained 65 and 80%, respectively, of initial activity after 180 minutes of incubation at 60 ºC. The kinetic parameters Km and Vmáx were 0.476 (mg.mL-1) and 8.58 (µmol/minute) for GA and 0.082 (M) and 48.20 (µmol/minute) for GI. The maximum glucose syrups production occurred after 24 hours of reaction with a 98% yield. The production of fructose syrups with 42% (w/v) was reached after 96 hours of reaction.
Resumo:
Protease and α-amylase production by a thermophilic Bacillus sp. SMIA-2 cultivated in liquid cultures containing 0.25% (w/v) starch as a carbon source reached a maximum at 18 hours (47 U.mg-1 Protein) and 36 hours (325 U.mg-1 Protein), respectively. Culture medium supplementation with whey protein concentrate (0.1%, w/v) and corn steep liquor (0.3%, w/v) not only improved the production of both enzymes but also enabled them to be produced simultaneously. Under these conditions, α-amylase and protease production reached a maximum in 18 hours with levels of 401 U.mg-1 protein and 78 U.mg-1 protein, respectively. The compatibility of the enzymes produced with commercial laundry detergent was investigated. In the presence of Campeiro® detergent, α-amylase activity increased while protease activity decreased by about 27%. These enzymes improved the cleaning power of Campeiro® detergent since they were able to remove egg yolk and tomato sauce stains when used in this detergent.
Resumo:
Due to changing cropping practices in perennial grass seed crops in western Oregon, USA, alternative rotation systems are being considered to reduce weed infestations. Information is generally lacking regarding the effects of alternative agronomic operations and herbicide inputs on soil weed seed bank composition during this transition. Six crop rotation systems were imposed in 1992 on a field that had historically produced monoculture perennial ryegrass (Lolium perenne L.) seeds. Each system plot was 20 x 30 m, arranged in a randomized complete block design, replicated four times. Twenty to thirty soil cores were sampled in June 1997 from each plot. The weed species composition of the cores was determined by successive greenhouse grow-out assays. In addition to seed density, heterogeneity indices for species evenness, richness, and diversity were determined. The most abundant species were Juncus bufonius L. and Poa annua L. Changes in seed bank composition were due to the different herbicides used for the rotation crop components. Compared to the other rotation systems, no-tillage, spring-planted wheat (Triticum aestivum L.) and oat (Avena sativa L.) reduced overall weed seed density and richness, but did not affect weed species evenness or diversity. When meadowfoam (Limnanthes alba Hartweg ex Benth.) succeeded wheat in rotation, weed species richness was unaffected, but evenness and diversity were reduced, compared to the other rotation systems. For meadowfoam in sequence after white clover (Trifolium repens L.), crop establishment method (no-tillage and conventional tillage) had no effect on weed seed species density, evenness, or diversity.
Resumo:
This research aimed to determine the soil seed bank and its relationship with environmental factors that have an influence in the distribution of the vegetation above the ground in an excluded area of natural grassland in the South of Brazil. Most of the 122 identified species in the seed bank were perennials. Data analysis indicated three distinct community groups, according to the size and composition of the soil seed bank in lowlands with permanent wet soils, in lowlands and in other areas. In general, lowlands were characterized by low-fertility soils, high moisture and aluminum contents, being spatially homogeneous habitats and, therefore, more restricted to vegetation heterogeneity than other parts of the relief. Environmental factors most associated with soil seed bank size and composition were relief position and their co-related soil variables such as: soil moisture content, potassium content, organic matter, basic saturation of cation exchange soil capacity, exchangeable basics sum of the soil and clay soil content. According to that, relief position, associated with combined effects of soil chemical properties related to it, determines the observed variation pattern of the soil seed bank, as a reflection of the vegetation above the area.
Resumo:
The objective of the study was to characterize annual ryegrass seed population dynamics, managed for natural re-sowing, in no til systems in rotation with soybean, in different chronosequences An area was cultivated for two years with soybean, left as fallow land for the next two years and then cultivated again with soybean for the next two years. The four chronosequences represented different management periods, two with soybean (6 and 8 years old) and the other two resting (3 and 9 years old). Soil samples were taken every month during one year and divided into two depths (0-5 and 5-10 cm). Vegetation dynamics were also evaluated (number of plants, inflorescences and seedlings). Soil seed bank (SSB) dynamics showed structural patterns in time, with a "storage period" in summer, an "exhausting period" during autumn and a "transition period" in winter and spring. Pasture establishment by natural re-sowing was totally dependent on the annual recruitment of seeds from the soil. The influence of the management practices on the SSB was more important than the number of years that these practices had been implemented. Places where soybean was sown showed the largest SSBs. Most of the seeds overcame dormancy and germinated at the end of the summer and beginning of the autumn, showing a typically transitory SSB, but with a small proportion of persistent seeds
Resumo:
The interest was the seed longevity dynamics of annual ryegrass in natural conditions as an important tool to explain its dynamics in no tillage systems used in the South of Brazil. The species is commonly managed for natural re-sowing and, in this way, allows cattle grazing with reduced costs during the winter time. In February of 2003, twenty bags of nylon screen containing sterilised soil with 100 seeds in each were randomly buried in the field, 5 cm deep. Around every three or four months, four sacks were exhumed. Seeds were counted and tested using germination and tetrazolium tests.The seeds showed high primary dormancy, which was overcome very fast. After 108, 226, 326, 565 and 732 days of burial there were no significant differences as the secondary dormancy of the seeds that did not germinate in autumn was not high. The last exhumation period was significantly different from the others due to the strong decay on seed viability. As few seeds remained viable after 732 days, the soil seed bank was classified as transient, being evident that in annual pastures the transitory seed banks have a main role in the regeneration of the species.
Resumo:
The correlation of soil fertility x seed physiological potential is very important in the area of seed technology but results published with that theme are contradictory. For this reason, this study to evaluate the correlations between soil chemical properties and physiological potential of soybean seeds. On georeferenced points, both soil and seeds were sampled for analysis of soil fertility and seed physiological potential. Data were assessed by the following analyses: descriptive statistics; Pearson's linear correlation; and geostatistics. The adjusted parameters of the semivariograms were used to produce maps of spatial distribution for each variable. Organic matter content, Mn and Cu showed significant effects on seed germination. Most variables studied presented moderate to high spatial dependence. Germination and accelerated aging of seeds, and P, Ca, Mg, Mn, Cu and Zn showed a better fit to spherical semivariogram: organic matter, pH and K had a better fit to Gaussian model; and V% and Fe showed a better fit to the linear model. The values for range of spatial dependence varied from 89.9 m for P until 651.4 m for Fe. These values should be considered when new samples are collected for assessing soil fertility in this production area.