973 resultados para LIGHT TRANSMISSION
Resumo:
Circadian oscillators provide rhythmic temporal cues for a range of biological processes in plants and animals, enabling anticipation of the day/night cycle and enhancing fitness-associated traits. We have used engineering models to understand the control principles of a plant's response to seasonal variation. We show that the seasonal changes in the timing of circadian outputs require light regulation via feed-forward loops, combining rapid light-signaling pathways with entrained circadian oscillators. Linear time-invariant models of circadian rhythms were computed for 3,503 circadian-regulated genes and for the concentration of cytosolic-free calcium to quantify the magnitude and timing of regulation by circadian oscillators and light-signaling pathways. Bioinformatic and experimental analysis show that rapid light-induced regulation of circadian outputs is associated with seasonal rephasing of the output rhythm. We identify that external coincidence is required for rephasing of multiple output rhythms, and is therefore important in general phase control in addition to specific photoperiod-dependent processes such as flowering and hypocotyl elongation. Our findings uncover a fundamental design principle of circadian regulation, and identify the importance of rapid light-signaling pathways in temporal control.
Resumo:
Campylobacter jejuni is one of the most common causes of acute enteritis in the developed world. The consumption of contaminated poultry, where C. jejuni is believed to be a commensal organism, is a major risk factor. However, the dynamics of this colonization process in commercially reared chickens is still poorly understood. Quantification of these dynamics of infection at an individual level is vital to understand transmission within populations and formulate new control strategies. There are multiple potential routes of introduction of C. jejuni into a commercial flock. Introduction is followed by a rapid increase in environmental levels of C. jejuni and the level of colonization of individual broilers. Recent experimental and epidemiological evidence suggest that the celerity of this process could be masking a complex pattern of colonization and extinction of bacterial strains within individual hosts. Despite the rapidity of colonization, experimental transmission studies exhibit a highly variable and unexplained delay time in the initial stages of the process. We review past models of transmission of C. jejuni in broilers and consider simple modifications, motivated by the plausible biological mechanisms of clearance and latency, which could account for this delay. We show how simple mathematical models can be used to guide the focus of experimental studies by providing testable predictions based on our hypotheses. We conclude by suggesting that competition experiments could be used to further understand the dynamics and mechanisms underlying the colonization process. The population models for such competition processes have been extensively studied in other ecological and evolutionary contexts. However, C. jejuni can potentially adapt phenotypically through phase variation in gene expression, leading to unification of ecological and evolutionary time-scales. For a theoretician, the colonization dynamics of C. jejuni offer an experimental system to explore these 'phylodynamics', the synthesis of population dynamics and evolutionary biology.
Resumo:
In this paper we consider the propagation of acoustic waves along a curved hollow or annular duct with lined walls. The curvature of the duct centreline and the wall radii vary slowly along the duct, allowing application of an asymptotic multiple scales analysis. This generalises Rienstra's analysis of a straight duct of varying cross-sectional radius. The result of the analysis is that the modal wavenumbers and mode shapes are determined locally as modes of a torus with the same local curvature, while the amplitude of the modes evolves as the mode propagates along the duct. The duct modes are found numerically at each axial location using a pseudo-spectral method. Unlike the case of a straight duct, there is a fundamental asymmetry between upstream and downstream propagating modes, with some mode shapes tending to be concentrated on either the inside or outside of the bend depending on the direction of propagation. The interaction between the presence of wall lining and curvature is investigated in particular; for instance, in a representative case it is found that the curvature causes the first few acoustic modes to be more heavily damped by the duct boundary than would be expected for a straight duct. Analytical progress can be made in the limit of very high mode order, in which case well-known 'whispering gallery' modes, localised close to the wall, can be identified.
Resumo:
The structure and chemistry of the interface between a Si(111) substrate and an AlN(0001) thin film grown by metalorganic vapor phase epitaxy have been investigated at a subnanometer scale using high-angle annular dark field imaging and electron energy-loss spectroscopy. 〈1120̄〉AlN ∥ 〈110〉Si and 〈0001〉AlN ∥ 〈111〉 Si epitaxial relations were observed and an Al-face polarity of the AlN thin film was determined. Despite the use of Al deposition on the Si surface prior to the growth, an amorphous interlayer of composition SiNx was identified at the interface. Mechanisms leading to its formation are discussed. © 2010 American Institute of Physics.
Resumo:
Electrical bias and light stressing followed by natural recovery of amorphous hafnium-indium-zinc-oxide (HIZO) thin film transistors with a silicon oxide/nitride dielectric stack reveals defect density changes, charge trapping and persistent photoconductivity (PPC). In the absence of light, the polarity of bias stress controls the magnitude and direction of the threshold voltage shift (Δ VT), while under light stress, VT consistently shifts negatively. In all cases, there was no significant change in field-effect mobility. Light stress gives rise to a PPC with wavelength-dependent recovery on time scale of days. We observe that the PPC becomes more pronounced at shorter wavelengths. © 2010 American Institute of Physics.
Resumo:
A 2-D Hermite-Gaussian square launch is demonstrated to show improved systems capacity over multimode fiber links. It shows a bandwidth improvement over both center and offset launches and exhibits ±5 μm misalignment tolerance. © 2011 Optical Society of America.
Resumo:
Microstructure characterization is important for controlling the quality of laser welding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft and an unambiguous identification of phases in the weldment was accomplished. It was found that there are gamma-FeCrNiC austenite solid solution dendrites as the matrix, (Nb, Ti) C type MC carbides, fine and dispersed Ni-3 Al gamma' phase as well as Laves particles in the interdendritic region of the seam zone. A brief discussion was given for their existence based on both kinetic and thermodynamic principles. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
An analytical model for size-dependent interface phonon transmission and thermal conductivity of nanolaminates is derived based on the improved acoustic mismatch theory and the Lindemann melting theory by considering the size effect of phonon velocity and the interface lattice mismatch effect. The model suggests that the interface phonon transmission is dominant for the cross-plane thermal conductivity of nanolaminates and superlattices, and the intrinsic variety of size effect of thermal conductivity for different systems is proposed based on the competition mechanism of size effect of phonon transport between two materials constituting the interfaces. The model's prediction for thermal conductivity of nanolaminates agrees with the experimental results. (C) 2008 American Institute of Physics.