996 resultados para LAND ACQUISITION
Resumo:
The EU has adopted the European Farmland Bird Index (EFBI) as a Structural and Sustainable Development Indicator and a proxy for wider biodiversity health on farmland. Changes in the EFBI over coming years are likely to reflect how well agri-environment schemes (AES), funded under Pillar 2 (Axis 2) of the Common Agricultural Policy, have been able to offset the detrimental impacts of past agricultural changes and deliver appropriate hazard prevention or risk mitigation strategies alongside current and future agricultural change. The delivery of a stable or positive trend in the EFBI will depend on the provision of sufficient funding to appropriately designed and implemented AES. We present a trait-based framework which can be used to quantify the detrimental impact of land-use change on farmland bird populations across Europe. We use the framework to show that changes in resource availability within the cropped area of agricultural landscapes have been the key driver of current declines in farmland bird populations. We assess the relative contribution of each Member State to the level of the EFBI and explore the relationship between risk contribution and Axis 2 funding allocation. Our results suggest that agricultural changes in each Member State do not have an equal impact on the EFBI, with land-use and management change in Spain having a particularly large influence on its level, and that funding is poorly targeted with respect to biodiversity conservation needs. We also use the framework to predict the EFBI in 2020 for a number of land-use change scenarios. This approach can be used to guide both the development and implementation of targeted AES and the objective distribution of Pillar 2 funds between and within Member States. We hope that this will contribute to the cost-effective and efficient delivery of Rural Development strategy and biodiversity conservation targets.
Resumo:
The associative sequence learning model proposes that the development of the mirror system depends on the same mechanisms of associative learning that mediate Pavlovian and instrumental conditioning. To test this model, two experiments used the reduction of automatic imitation through incompatible sensorimotor training to assess whether mirror system plasticity is sensitive to contingency (i.e., the extent to which activation of one representation predicts activation of another). In Experiment 1, residual automatic imitation was measured following incompatible training in which the action stimulus was a perfect predictor of the response (contingent) or not at all predictive of the response (noncontingent). A contingency effect was observed: There was less automatic imitation indicative of more learning in the contingent group. Experiment 2 replicated this contingency effect and showed that, as predicted by associative learning theory, it can be abolished by signaling trials in which the response occurs in the absence of an action stimulus. These findings support the view that mirror system development depends on associative learning and indicate that this learning is not purely Hebbian. If this is correct, associative learning theory could be used to explain, predict, and intervene in mirror system development.
Resumo:
Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.
Resumo:
An idealized equilibrium model for the undisturbed partly cloudy boundary layer (BL) is used as a framework to explore the coupling of the energy, water, and carbon cycles over land in midlatitudes and show the sensitivity to the clear‐sky shortwave flux, the midtropospheric temperature, moisture, CO2, and subsidence. The changes in the surface fluxes, the BL equilibrium, and cloud cover are shown for a warmer, doubled CO2 climate. Reduced stomatal conductance in a simple vegetation model amplifies the background 2 K ocean temperature rise to an (unrealistically large) 6 K increase in near‐surface temperature over land, with a corresponding drop of near‐surface relative humidity of about 19%, and a rise of cloud base of about 70 hPa. Cloud changes depend strongly on changes of mean subsidence; but evaporative fraction (EF) decreases. EF is almost uniquely related to mixed layer (ML) depth, independent of background forcing climate. This suggests that it might be possible to infer EF for heterogeneous landscapes from ML depth. The asymmetry of increased evaporation over the oceans and reduced transpiration over land increases in a warmer doubled CO2 climate.
Resumo:
Quadratic programming techniques were applied to household food consumption data in England and Wales to estimate likely changes in diet under healthy eating guidelines, and the consequences this would have on agriculture and land use in England and Wales. The first step entailed imposing nutrient restrictions on food consumption following dietary recommendations suggested by the UK Department of Health. The resulting diet was used, in a second step as a proxy for demand in agricultural commodities, to test the impact of such a scenario on food production and land use in England and Wales and the impacts of this on agricultural landscapes. Results of the diet optimisation indicated a large drop in consumption of foods rich in saturated fats and sugar, essentially cheese and sugar-based products, along with lesser cuts of fat and meat products. Conversely, consumption of fruit and vegetables, cereals, and flour would increase to meet dietary fibre recommendations. Such a shift in demand would dramatically affect production patterns: the financial net margin of England and Wales agriculture would rise, due to increased production of high market value and high economic margin crops. Some regions would, however, be negatively affected, mostly those dependent on beef cattle and sheep production that could not benefit from an increased demand for cereals and horticultural crops. The effects of these changes would also be felt in upstream industries, such as animal feed suppliers. While arable dominated landscapes would be little affected, pastoral landscapes would suffer through loss of grazing management and, possibly, land abandonment, especially in upland areas.
Resumo:
The Water Framework Directive has caused a paradigm shift towards the integrated management of recreational water quality through the development of drainage basin-wide programmes of measures. This has increased the need for a cost-effective diagnostic tool capable of accurately predicting riverine faecal indicator organism (FIO) concentrations. This paper outlines the application of models developed to fulfil this need, which represent the first transferrable generic FIO models to be developed for the UK to incorporate direct measures of key FIO sources (namely human and livestock population data) as predictor variables. We apply a recently developed transfer methodology, which enables the quantification of geometric mean presumptive faecal coliforms and presumptive intestinal enterococci concentrations for base- and high-flow during the summer bathing season in unmonitored UK watercourses, to predict FIO concentrations in the Humber river basin district. Because the FIO models incorporate explanatory variables which allow the effects of policy measures which influence livestock stocking rates to be assessed, we carry out empirical analysis of the differential effects of seven land use management and policy instruments (fiscal constraint, production constraint, cost intervention, area intervention, demand-side constraint, input constraint, and micro-level land use management) all of which can be used to reduce riverine FIO concentrations. This research provides insights into FIO source apportionment, explores a selection of pollution remediation strategies and the spatial differentiation of land use policies which could be implemented to deliver river quality improvements. All of the policy tools we model reduce FIO concentrations in rivers but our research suggests that the installation of streamside fencing in intensive milk producing areas may be the single most effective land management strategy to reduce riverine microbial pollution.
Resumo:
Multi-rate multicarrier DS-CDMA is a potentially attractive multiple access method for future wireless networks that must support multimedia, and thus multi-rate, traffic. Considering that high performance detection such as coherent demodulation needs the explicit knowledge of the channel, this paper proposes a subspace-based blind adaptive algorithm for timing acquisition and channel estimation in asynchronous multirate multicarrier DS-CDMA systems, which is applicable to both multicode and variable spreading factor systems.
Resumo:
This paper explores principal‐agent issues in the stock selection processes of institutional property investors. Drawing upon an interview survey of fund managers and acquisition professionals, it focuses on the relationships between principals and external agents as they engage in property transactions. The research investigated the extent to which the presence of outcome‐based remuneration structures could lead to biased advice, overbidding and/or poor asset selection. It is concluded that institutional property buyers are aware of incentives for opportunistic behaviour by external agents, often have sufficient expertise to robustly evaluate agents’ advice and that these incentives are counter‐balanced by a number of important controls on potential opportunistic behaviour. There are strong counter‐incentives in the need for the agents to establish personal relationships and trust between themselves and institutional buyers, to generate repeat and related business and to preserve or generate a good reputation in the market.