971 resultados para KINETIC OSCILLATIONS
Resumo:
We consider the quantum dynamics of a neutral atom Bose-Einstein condensate in a double-well potential, including many-body hard-sphere interactions. Using a mean-field factorization we show that the coherent oscillations due to tunneling are suppressed when the number of atoms exceeds a critical value. An exact quantum solution, in a two-mode approximation, shows that the mean-field solution is modulated by a quantum collapse and revival sequence.
Resumo:
We report on the experimental observation of both basic frequency locking synchronization and chaos synchronization between two mutually coupled chaotic subsystems. We show that these two kinds of synchronization are two stages of interaction between coupled chaotic systems. in particular the chaos synchronization could be understood as a state of phase locking between coupled chaotic oscillations.
Resumo:
Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.
Resumo:
For the purpose of developing a longitudinal model to predict hand-and-foot syndrome (HFS) dynamics in patients receiving capecitabine, data from two large phase III studies were used. Of 595 patients in the capecitabine arms, 400 patients were randomly selected to build the model, and the other 195 were assigned for model validation. A score for risk of developing HFS was modeled using the proportional odds model, a sigmoidal maximum effect model driven by capecitabine accumulation as estimated through a kinetic-pharmacodynamic model and a Markov process. The lower the calculated creatinine clearance value at inclusion, the higher was the risk of HFS. Model validation was performed by visual and statistical predictive checks. The predictive dynamic model of HFS in patients receiving capecitabine allows the prediction of toxicity risk based on cumulative capecitabine dose and previous HFS grade. This dose-toxicity model will be useful in developing Bayesian individual treatment adaptations and may be of use in the clinic.
Resumo:
Renaturation of protein expressed as inclusion bodies within Escherichia coli is a key step in many bioprocesses. Operating conditions for the refolding step dramatically affect the amount of protein product recovered, and hence profoundly influence the process economics. The first systematic comparison of refolding conducted in batch, fed-batch and continuous stirred-tank reactors is provided Refolding is modeled as kinetic competition between first-order refolding (equilibrium reaction) and irreversible aggregation (second-order). Simulations presented allow direct comparison between different flowsheets and refolding schemes using a dimensionless economic objective. As expected from examination of the reaction kinetics, batch operation is the most inefficient merle. For the base process considered, the overall cost of fed-batch and continuous refolding is virtually identical (less than half that of the batch process). Reactor selection and optimization of refolding using overall economics are demonstrated to be vitally important.
Resumo:
The suprathermal particles, electrons and protons, coming from the magnetosphere and precipitating into the high-latitude atmosphere are an energy source of the Earth's ionosphere. They interact with ambient thermal gas through inelastic and elastic collisions. The physical quantities perturbed by these precipitations, such as the heating rate, the electron production rate, or the emission intensities, can be provided in solving the kinetic stationary Boltzmann equation. This equation yields particle fluxes as a function of altitude, energy, and pitch angle. While this equation has been solved through different ways for the electron transport and fully tested, the proton transport is more complicated. Because of charge-changing reactions, the latter is a set of two-coupled transport equations that must be solved: one for protons and the other for H atoms. We present here a new approach that solves the multistream proton/hydrogen transport equations encompassing the collision angular redistributions and the magnetic mirroring effect. In order to validate our model we discuss the energy conservation and we compare with another model under the same inputs and with rocket observations. The influence of the angular redistributions is discussed in a forthcoming paper.
Resumo:
We consider solutions to the second-harmonic generation equations in two-and three-dimensional dispersive media in the form of solitons localized in space and time. As is known, collapse does not take place in these models, which is why the solitons may be stable. The general solution is obtained in an approximate analytical form by means of a variational approach, which also allows the stability of the solutions to be predicted. Then, we directly simulate the two-dimensional case, taking the initial configuration as suggested by the variational approximation. We thus demonstrate that spatiotemporal solitons indeed exist and are stable. Furthermore, they are not, in the general case, equivalent to the previously known cylindrical spatial solitons. Direct simulations generate solitons with some internal oscillations. However, these oscillations neither grow nor do they exhibit any significant radiative damping. Numerical solutions of the stationary version of the equations produce the same solitons in their unperturbed form, i.e., without internal oscillations. Strictly stable solitons exist only if the system has anomalous dispersion at both the fundamental harmonic and second harmonic (SH), including the case of zero dispersion at SH. Quasistationary solitons, decaying extremely slowly into radiation, are found in the presence of weak normal dispersion at the second-harmonic frequency.
Resumo:
The objective of this study was to find very early viral kinetic markers to predict nonresponse to hepatitis C virus (HCV) therapy in a group of human immunodeficiency virus (HIV)/HCV-coinfected patients. Twenty-six patients (15 HCV genotype-1 and 11 genotype-3) were treated with a 48-week regimen of peginterferon-alfa-2a (PEG-IFN) (180 mu g/week) and weight-based ribavirin (11 mg/kg/day). Samples were collected at baseline; 4, 8, 12, 18, 24, 30, 36 and 42 h; days 2, 3, 4, 7, 8, 15, 22, 29, 43 and 57 then weekly and monthly. Five patients discontinued treatment. Seven patients (27%) achieved a sustained virological response (SVR). Nadir HCV RNA levels were observed 1.6 +/- 0.3 days after initiation of therapy, followed by a 0.3- to 12.9-fold viral rebound until the administration of the second dose of PEG-IFN, which were not associated with SVR or HCV genotype. A viral decline < 1.19 log for genotype-1 and < 0.97 log for genotype-3, 2 days after starting therapy, had a negative predictive value (NPV) of 100% for SVR. The day 2 virological response had a similar positive predictive value for SVR as a rapid virological response at week 4. In addition, a second-phase viral decline slope (i.e., measured from day 2 to 29) < 0.3 log/week had a NPV = 100% for SVR. We conclude that first-phase viral decline at day 2 and second-phase viral decline slope (< 0.3 log/week) are excellent predictors of nonresponse. Further studies are needed to validate these viral kinetic parameters as early on-treatment prognosticators of nonresponse in patients with HCV and HIV.
Resumo:
We examined the association between IL28B single-nucleotide polymorphism rs12979860, hepatitis C virus (HCV) kinetic, and pegylated interferon alpha-2a pharmacodynamic parameters in HIV/HCV-coinfected patients from South America. Twenty-six subjects received pegylated interferon alpha-2a + ribavirin. Serum HCV-RNA and interferon concentrations were measured frequently during the first 12 weeks of therapy and analyzed using mathematical models. African Americans and whites had a similar distribution of IL28B genotypes (P = 0.5). The IL28B CC genotype was overrepresented (P = 0.015) in patients infected with HCV genotype-3 compared with genotype-1. In both genotype-1 and genotype-3, the first-phase viral decline and the average pegylated interferon-alpha-2a effectiveness during the first week of therapy were larger (trend P <= 0.12) in genotype-CC compared with genotypes-TC/TT. In genotype-1 patients, the second slower phase of viral decline (days 2-29) and infected cells loss rate, delta, were larger (P = 0.02 and 0.11, respectively) in genotype-CC than in genotypes-TC/TT. These associations were not observed in genotype-3 patients.
Resumo:
Background & Aims: The pharmacokinetics and pharmacodynamics of pegylated-interferon-alpha-2a (PEG-IFN) have not been described in HCV/HIV co-infected patients. We sought to estimate the pharmacokinetics and pharmacodynamics of PEG-IFN and determine whether these parameters predict treatment outcome. Methods: Twenty-six HCV/human immunodeficiency virus (HIV)-co-infected patients were treated with a 48-week regimen of PEG-IFN (180 mu g/week) plus ribavirin (11 mg/kg/day). HCV RNA and PEG-IFN concentrations were obtained from samples collected until week 12. A modeling framework that includes pharmacokinetic and pharmacodynamic parameters was developed. Results: Five patients discontinued treatment. Seven patients achieved a sustained virological response (SVR). PEG-IFN concentrations at day 8 were similar to steady-state levels (p = 0.15) and overall pharmacokinetic parameters were similar in SVRs and non-SVRs. The maximum PEG-IFN effectiveness during the first PEG-IFN dose and the HCV-infected cell loss rate (delta), were significantly higher in SVRs compared to non-SVRs (median 95% vs. 86% [p = 0.013], 0.27 vs. 0.11 day(-1) [p = 0.006], respectively). Patients infected with HCV genotype 1 had a significantly lower average first-week PEG-IFN effectiveness (median 70% vs. 88% [p = 0.043]), however, 4- to 12-week PEG-IFN effectiveness was not significantly different compared to those with genotype 3 (p = 0.114). Genotype 1 had a significantly lower delta compared to genotype 3 (median 0.14 vs. 0.23 day(-1) [p = 0.021]). The PEG-IFN concentration that decreased HCV production by 50% (EC(50)) was lower in genotype 3 compared to genotype 1 (median 1.3 vs. 3.4 [p = 0.034]). Conclusions: Both the HCV-infected cell loss rate (delta) and the maximum effectiveness of the first dose of PEG-IFN-alpha-2a characterised HIV co-infected patients and were highly predictive of SVR. Further studies are needed to validate these viral kinetic parameters as early on-treatment prognosticators of response in patients with HCV and HIV. (C) 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Resumo:
To investigate the effect of earlier triceps surae (TS) surgical lengthening at knee kinematics in the stance phase in patients with cerebral palsy (CP). One thousand and thirty-nine participants from an eligible total of 1750 children with CP were referred to gait analysis laboratory from January 2000 to April 2007. Inclusion criteria were the diagnosis of diparetic spastic CP levels I to III (GMFCS) and complete kinematics documentation. Patients with an asymmetrical knee pattern at kinematics and with different types of TS management among sides were excluded. The patients were divided into two groups according to the mean minimum knee flexion (MMKF) in stance phase: group A (n = 253) MMKF >= 30 degrees and group B (n = 786) MMKF less than 30 degrees. For each group, the occurrence of following procedures for TS in the past: (i) earlier surgery, (ii) gastrocnemius lengthening (zone I), (iii) gastrocnemius and soleus lengthening (zone II), and (iv) calcaneous tendon lengthening (zone III), was investigated. A chi(2) test was applied to check if the number of procedures performed was different between groups. The level of significance was defined as P value of less than 0.05. The number of patients with no earlier surgeries at TS was higher in group B (51.8%) than in group A (39.1%), and this difference was significant (P<0.01). In addition, the number of procedures at the calcaneous tendon was more elevated in group A (36.8%) than in group B (27%), and this finding was statistically significant as well (P<0.02). The percentage of surgical lengthening at zones I and II was very similar between the groups A and B. This study has shown that patients without earlier surgical procedures at TS are more susceptible to reach better extension of the knees in the stance phase. Patients in a crouch gait had a higher number of calcaneous tendon lengthening performed in the past than patients with a more normal knee extension in the stance phase. J Pediatr Orthop B 19:226-230 (C) 2010 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.