990 resultados para Java Modelling Language (JML)
Resumo:
This contribution builds upon a former paper by the authors (Lipps and Betz 2004), in which a stochastic population projection for East- and West Germany is performed. Aim was to forecast relevant population parameters and their distribution in a consistent way. We now present some modifications, which have been modelled since. First, population parameters for the entire German population are modelled. In order to overcome the modelling problem of the structural break in the East during reunification, we show that the adaptation process of the relevant figures by the East can be considered to be completed by now. As a consequence, German parameters can be modelled just by using the West German historic patterns, with the start-off population of entire Germany. Second, a new model to simulate age specific fertility rates is presented, based on a quadratic spline approach. This offers a higher flexibility to model various age specific fertility curves. The simulation results are compared with the scenario based official forecasts for Germany in 2050. Exemplary for some population parameters (e.g. dependency ratio), it can be shown that the range spanned by the medium and extreme variants correspond to the s-intervals in the stochastic framework. It seems therefore more appropriate to treat this range as a s-interval covering about two thirds of the true distribution.
Resumo:
The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.
Resumo:
In this paper we describe the results of a simulation study performed to elucidate the robustness of the Lindstrom and Bates (1990) approximation method under non-normality of the residuals, under different situations. Concerning the fixed effects, the observed coverage probabilities and the true bias and mean square error values, show that some aspects of this inferential approach are not completely reliable. When the true distribution of the residuals is asymmetrical, the true coverage is markedly lower than the nominal one. The best results are obtained for the skew normal distribution, and not for the normal distribution. On the other hand, the results are partially reversed concerning the random effects. Soybean genotypes data are used to illustrate the methods and to motivate the simulation scenarios
Resumo:
Most sedimentary modelling programs developed in recent years focus on either terrigenous or carbonate marine sedimentation. Nevertheless, only a few programs have attempted to consider mixed terrigenous-carbonate sedimentation, and most of these are two-dimensional, which is a major restriction since geological processes take place in 3D. This paper presents the basic concepts of a new 3D mathematical forward simulation model for clastic sediments, which was developed from SIMSAFADIM, a previous 3D carbonate sedimentation model. The new extended model, SIMSAFADIM-CLASTIC, simulates processes of autochthonous marine carbonate production and accumulation, together with clastic transport and sedimentation in three dimensions of both carbonate and terrigenous sediments. Other models and modelling strategies may also provide realistic and efficient tools for prediction of stratigraphic architecture and facies distribution of sedimentary deposits. However, SIMSAFADIM-CLASTIC becomes an innovative model that attempts to simulate different sediment types using a process-based approach, therefore being a useful tool for 3D prediction of stratigraphic architecture and facies distribution in sedimentary basins. This model is applied to the neogene Vallès-Penedès half-graben (western Mediterranean, NE Spain) to show the capacity of the program when applied to a realistic geologic situation involving interactions between terrigenous clastics and carbonate sediments.
Resumo:
After a steady decline in the early 20th century, several terrestrial carnivore species have recently recovered in Western Europe, either through reintroductions or natural recolonization. Because of the large space requirements of these species and potential conflicts with human activities, ensuring their recovery requires the implementation of conservation and management measures that address the environmental, landscape and social dimensions of the problem. Few examples exist of such integrated management. Taking the case of the otter (Lutra lutra) in Switzerland, we propose a multi-step approach that allows to (1) identify areas with potentially suitable habitat, (2) evaluate their connectivity, (3) verify the potentiality of the species recolonization from populations in neighbouring countries. We showed that even though suitable habitat is available for the species and the level of structural connectivity within Switzerland is satisfactory, the level of connectivity with neighbouring populations is crucial to prioritize strategies that favour the species recovery in the field. This research is the first example integrating habitat suitability and connectivity assessment at different scales with other factors in a multi-step assessment for species recovery.
Resumo:
Using a scaling assumption, we propose a phenomenological model aimed to describe the joint probability distribution of two magnitudes A and T characterizing the spatial and temporal scales of a set of avalanches. The model also describes the correlation function of a sequence of such avalanches. As an example we study the joint distribution of amplitudes and durations of the acoustic emission signals observed in martensitic transformations [Vives et al., preceding paper, Phys. Rev. B 52, 12 644 (1995)].