992 resultados para Iron-containing Intermetallics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis aims to present the results of the experimental investigations on the electrical properties like electrical conductivity, dielectric constant and ionic thermo~ currents in certain ammonium containing ferroelectric crystals viz. LiNH4SO4, (NH4)2SO4 and (NH4)5H(SO4)2. Special attention has been paid in revealing the mechanisms of electrical conduction in the various phases of these crystals and those asso~ ciated with the different phase transitions occurring in them, by making studies on doped, quenched and deuterated crystals. The report on the observation of two new phase transitions in (NH4) S O2 and of a similar one in ( NH4 ) H (2SO4 ) are included. The relaxation mechanisms of the impurity-vacancy complexes and the space charge phenomena in pure and doped crystals of LiNH4SO4 and (NH4)2SO4 and the observation of a new type of ionic thermo-current viz. Protonic Thermo-Current (PTC) in these crystals are also presented here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present thesis a series of exhaustive investigations have been carried out on a number of crystalline samples with special reference tx> the jphase transitions exhibited by them. These include single crystals of pure, doped or deuterated specimens of certain ammonium containing crystals viz., (NH )34H(SO4)2, (NH4)2HPO4, (NH4)2Cr2O7 znui NH4H2PO4. ac/dc electrical conductivity, dielectric constant, ionic thermocurrent as wwifil as photoacoustic measurements have been carried out on most of them over a wide range of temperature. In addition investigations have been carried out in pure and doped single crystals of NaClO3 and NaNO3 using ionic thermocurrent measurements and these are presented here. Special attention has been paid to reveal the mechanism of electrical conduction in various phases of "these crystals and to evaluate the different parameters involved in the conduction as well as phase transition process. The thesis contains ten chapters ‘

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysis research underpins the science of modern chemical processing and fuel technologies. Catalysis is commercially one of the most important technologies in national economies. Solid state heterogeneous catalyst materials such as metal oxides and metal particles on ceramic oxide substrates are most common. They are typically used with commodity gases and liquid reactants. Selective oxidation catalysts of hydrocarbon feedstocks is the dominant process of converting them to key industrial chemicals, polymers and energy sources.[1] In the absence of a unique successfiil theory of heterogeneous catalysis, attempts are being made to correlate catalytic activity with some specific properties of the solid surface. Such correlations help to narrow down the search for a good catalyst for a given reaction. The heterogeneous catalytic performance of material depends on many factors such as [2] Crystal and surface structure of the catalyst. Thermodynamic stability of the catalyst and the reactant. Acid- base properties of the solid surface. Surface defect properties of the catalyst.Electronic and semiconducting properties and the band structure. Co-existence of dilferent types of ions or structures. Adsorption sites and adsorbed species such as oxygen.Preparation method of catalyst , surface area and nature of heat treatment. Molecular structure of the reactants. Many systematic investigations have been performed to correlate catalytic performances with the above mentioned properties. Many of these investigations remain isolated and further research is needed to bridge the gap in the present knowledge of the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work emphasizes the use of chirality as an efficient tool to synthesize new types of second order nonlinear materials. Second harmonic generation efficiency (SHG) is used as a measure of second order nonlinear response. Nonlinear optical properties of polymers have been studied theoretically and experimentally. Polymers were designed theoretically by ab initio and semiempirical calculations. All the polymeric systems have been synthesized by condensation polymerization. Second harmonic generation efficiency of the synthesized systems has been measured experimentally by Kurtz and Perry powder method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rubber ferrite composites containing various mixed ferrites were prepared for different compositions and various loadings. The magnetic and dielectric properties of the fillers as well as the ferrite filled matrixes were evaluated separately. The results are correlated. Simple equations are proposed to predetermine the magnetic and dielectric properties. The validity of these equations is verified and they are found to be in good agreement. These equations are useful in tailoring the magnetic and dielectric properties of these composites with predetermined properties

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic nanocomposites containing iron oxide particles embedded in a polymer matrix have been synthesized using the method of ion exchange. They have been characterized by using low temperature and room temperature magnetic measurements and Mo¨ ssbauer spectroscopy. The iron content in these samples has also been determined. The results have been analysed and explained. The physical and chemical properties of these nanocomposite materials are different from those of the bulk. Some of the unique properties of these materials find application in information storage, color imaging, ferrofluids and magnetic refrigeration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine particles of barium ferrite (BaFe12O19) were synthesized by the conventional ceramic technique. These materials were then characterized by the X-ray diffraction method and incorporated in the natural rubber matrix according to a specific receipe for various loadings of ferrite. The rubber ferrite composites (RFC) thus obtained have several applications, and have the advantage of molding into complex shapes. For applications such as microwave absorbers, these composites should have an appropriate dielectric strength with the required mechanical and magnetic properties. The N330 (HAF) carbon black has been added to these RFCs for various loadings to modify the dielectric and mechanical properties. In this article we report the effect of carbon black on the mechanical and dielectric properties of these RFCs. Both the mechanical and dielectric properties can be enhanced by the addition of an appropriate amount of carbon black

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (MWCNTs) possessing an average inner diameter of 150 nm were synthesized by template assisted chemical vapor deposition over an alumina template. Aqueous ferrofluid based on superparamagnetic iron oxide nanoparticles (SPIONs) was prepared by a controlled co-precipitation technique, and this ferrofluid was used to fill the MWCNTs by nanocapillarity. The filling of nanotubes with iron oxide nanoparticles was confirmed by electron microscopy. Selected area electron diffraction indicated the presence of iron oxide and graphitic carbon from MWCNTs. The magnetic phase transition during cooling of the MWCNT–SPION composite was investigated by low temperature magnetization studies and zero field cooled (ZFC) and field cooled experiments. The ZFC curve exhibited a blocking at ∼110 K. A peculiar ferromagnetic ordering exhibited by the MWCNT–SPION composite above room temperature is because of the ferromagnetic interaction emanating from the clustering of superparamagnetic particles in the constrained volume of an MWCNT. This kind of MWCNT–SPION composite can be envisaged as a good agent for various biomedical applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano magnetic oxides are promising candidates for high density magnetic storage and other applications. Nonspherical mesoscopic iron oxide particles are also candidate materials for studying the shape, size and strain induced modifications of various physical properties viz. optical, magnetic and structural. Spherical and nonspherical iron oxides having an aspect ratio, ~2, are synthesized by employing starch and ethylene glycol and starch and water, respectively by a novel technique. Their optical, structural, thermal and magnetic properties are evaluated. A red shift of 0⋅24 eV is observed in the case of nonspherical particles when compared to spherical ones. The red shift is attributed to strain induced changes in internal pressure inside the elongated iron oxide particles. Pressure induced effects are due to the increased overlap of wave functions. Magnetic measurements reveal that particles are superparamagnetic. The marked increase in coercivity in the case of elongated particles is a clear evidence for shape induced anisotropy. The decreased specific saturation magnetization of the samples is explained on the basis of weight percentage of starch, a nonmagnetic component and is verified by TGA and FTIR studies. This technique can be modified for tailoring the aspect ratio and these particles are promising candidates for drug delivery and contrast enhancement agents in magnetic resonance imaging

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multimodal imaging agents that combine magnetic and fluorescent imaging capabilities are desirable for the high spatial and temporal resolution. In the present work, we report the synthesis of multifunctional fluorescent ferrofluids using iron oxide as the magnetic core and rhodamine B as fluorochrome shell. The core–shell structure was designed in such a way that fluorescence quenching due to the inner magnetic core was minimized by an intermediate layer of silica. The intermediate passive layer of silica was realized by a novel method which involves the esterification reaction between the epoxy group of prehydrolysed 3-Glyidoxypropyltrimethoxysilane and the surfactant over iron oxide. The as-synthesized ferrofluids have a high saturation magnetization in the range of 62–65 emu/g and were found to emit light of wavelength 640 nm ( excitation = 446 nm). Time resolved life time decay analysis showed a bi-exponential decay pattern with an increase in the decay life time in the presence of intermediate silica layer. Cytotoxicity studies confirmed the cell viability of these materials. The in vitro MRI imaging illustrated a high contrast when these multimodal nano probes were employed and the R2 relaxivity of these ∗Author to whom correspondence should be addressed. Email: smissmis@gmail.com sample was found to be 334 mM−1s−1 which reveals its high potential as a T2 contrast enhancing agent

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rubber ferrite composites (RFC) are magnetic polymer composites and have a variety of applications as flexible magnets, pressure=photo sensors, and microwave absorbers. The mouldability into complex shapes is one of the advantages of these magnetic elastomers. They have the potential of replacing the conventional ceramic materials, due to theire flexible nature. In the present study, the incorporation of pre-characterized hexagonal ferrites, namely barium ferrite (BaFe12O19), into natural rubber matrix is carried out according to a suitable recipe for various loadings of the filler. The processability of these compounds was determined by evaluating the cure characteristics: scorch time, cure time, and minimum and maximum torque. It has been found that the addition of magnetic fillers does not affect the processability of the composites, whereas the physical properties are modified. The magnetic properties of these composites containing various loadings of the magnetic filler were also investigated. The magnetic properties of RFC can be controlled by the addition of appropriate amount of the ferrite filler.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine particles of barium ferrite (BaFe12O19) belonging to the M-type hexagonal ferrites were prepared by the conventional ceramic techniques. They were incorporated into a nitrile rubber matrix according to a specific recipe for various loadings to produce rubber ferrite composites (RFC). The percolation threshold is not reached for a maximum loading of 130 phr (parts per hundred rubber). Here in this paper, the magnetic properties and processability of the nitrile rubber based RFCs containing barium ferrite (BaF) and HAF carbon black is reported. The magnetic properties of the ceramic ferrite and these rubber ferrite composites were evaluated and it was found that the coercivity values of RFCs were less than that of the ceramic BaF, but remained constant with the loading of both the ferrite filler and carbon black. However, other properties like saturation magnetization and magnetic remanence increased with the loading of ferrite filler.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial samples of Magnetite with size ranging from 25–30nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work derives motivation from the so called surface/interfacial magnetism in core shell structures and commercial samples of Fe3O4 and c Fe2O3 with sizes ranging from 20 to 30 nm were coated with polyaniline using plasma polymerization and studied. The High Resolution Transmission Electron Microscopy images indicate a core shell structure after polyaniline coating and exhibited an increase in saturation magnetization by 2 emu/g. For confirmation, plasma polymerization was performed on maghemite nanoparticles which also exhibited an increase in saturation magnetization. This enhanced magnetization is rather surprising and the reason is found to be an interfacial phenomenon resulting from a contact potential.