987 resultados para InxGa1-xAs self-assembly


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and effective method is introduced to synthesize a series of polystyrene-b-poly(oligo(ethylene oxide) monomethyl ether methacrylate)-b- polystyrene (PSt-b-POEOMA-b-PSt) triblock copolymers. The structures of PSt-b-POEOMA-b-PSt copolymers were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR) spectroscopy. The molecular weight and molecular weight distribution of the copolymer were measured by gel permeation chromatography (GPC). Furthermore£ the self-assembling and drug-loaded behaviours of three different ratios of PSt-b-POEOMA-b-PSt were studied. These copolymers could readily self-assemble into micelles in aqueous solution. The vitamin E-loaded copolymer micelles were produced by the dialysis method. The micelle size and core-shell structure of the block copolymer micelles and the drug-loaded micelles were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The thermal properties of the copolymer micelles before and after drug-loaded were investigated by different scanning calorimetry (DSC). The results show that the micelle size is slightly increased with increasing the content of hydrophobic segments and the micelles are still core-shell spherical structures after drug-loaded. Moreover, the glass transition temperature (Tg) of polystyrene is reduced after the drug loaded. The drug loading content (DLC) of the copolymer micelles is 70%-80% by ultraviolet (UV) photolithography analysis. These properties indicate the micelles self-assembled from PSt-b- POEOMA-b- PSt copolymers would have potential as carriers for the encapsulation of hydrophobic drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forces generated by polymerizing/de-polymerizing actin filaments confined between two mica surfaces were measured using the Surface Forces Apparatus. The measurements show that confined actin filaments exhibit complex force-generation dynamics involving multiple “modes”, the predominance of which is determined by the confinement gap and the applied force (confining pressure).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noncovalent recognition between peptides and inorganic materials is an established phenomenon. Key to exploiting these interactions in a wide range of materials self-assembly applications would be to harness the facet-selective control of peptide binding onto these materials. Fundamental understanding of what drives facet-selectivity in peptide binding is developing, but as yet is not sufficient to enable design of predictable facet-specific sequences. Computational simulation of the aqueous peptide-gold interface, commonly used to understand the mechanisms driving adsorption at an atomic level, has thus far neglected the role that surface reconstruction might play in facet specificity. Here the polarizable GolP-CHARMM suite of force fields is extended to include the reconstructed Au(100) surface. The force field, compatible with the bio-organic force field CHARMM, is parametrized using first-principles data. Our extended force field is tailored to reproduce the heterogeneity of weak chemisorbing N and S species to specific locations in the Au(100)(5 × 1) surface identified from the first-principles calculations. We apply our new model to predict and compare the three-dimensional structure of liquid water at Au(111), Au(100)(1 × 1), and Au(100)(5 × 1) interfaces. Using molecular dynamics simulations, we predict an increased likelihood for water-mediated peptide adsorption at the aqueous-Au(100)(1 × 1) interface compared with the Au(100)(5 × 1) interface. Therefore, our findings suggest that peptide binding can discriminate between the native and reconstructed Au(100) interfaces and that the role of reconstruction on binding at the Au(100) interface should not be neglected. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macromolecular assembly of block copolymers into numerous nanostructures resembles self-organization of proteins and cellular components found in nature. In order to mimic nature’s assemblies either to cure a disease or construct functional devices, the organization principles underpinning the emergence of complex shapes need to be understood. In the same vein, this study aimed at understanding morphology evolution in a triblock copolymer blend in aqueous solution. An ABA type amphiphilic triblock copolymer (polystyrene-b-polyethylene oxide-b-polystyrene, PS-b-PEO-b-PS) was synthesized at different compositions via atom transfer radical polymerization (ATRP) and self-assembly behavior of a binary mixture in aqueous solution was studied. Block copolymers that form worms and vesicles in its pristine state was shown to form complex morphologies such as fused rings, “jellyfish”, toroid vesicles, large compound vesicles and large lamellae after blending. The tendency of vesicle-forming block copolymer to form bilayers may be responsible for triggering complex morphologies when mixed with a worm or micelle-forming polymer. In other words, the interplay between curvature effects produced by two distinct polymers with different hydrophobic block lengths results in complex morphologies due to chain segregation within the nanostructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interfacial interaction of composites dominates the properties of polymeric/inorganic nanocomposites. Herein, epoxy and hydroxyl groups are introduced into the natural rubber (NR) molecular chains to anchor oxygenous functional groups on the surface of graphene oxide (GO) sheets and therefore enhance the interfacial interaction between GO and rubber. From the morphological observation and interaction analysis, it is found that epoxidized natural rubber (ENR) latex particles are assembled onto the surfaces of GO sheets by employing hydrogen bonding interaction as driving force. This self-assembly depresses restacking and agglomeration of GO sheets and leads to homogenous dispersion of GO within ENR matrix. The formation of hydrogen bonding interface between ENR and GO demonstrates a significant reinforcement for the ENR host. Compared with those of pure ENR, the composite with 0.7 wt% GO loading receives 87% increase in tensile strength and 8.7 fold increase in modulus at 200% elongation after static in-situ vulcanization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monitoring of lead (II) ions (Pb(2+)) in water is essential for both human health and the environment. Herein, a simple yet innovative biosensor for Pb(2+) detection is presented. The sensor is developed by the self-assembly of gold nanoparticles (GNPs) core-satellite structure using naturally occurring tripeptide glutathione (GSH) as linker. The addition of Pb(2+) caused a red-to-blue color change and the localized surface plasmon resonance (LSPR) band was shifted to ca. 650nm. The limit of detection (LOD) is found to be 47.6nM (9.9ppb) by UV-vis spectroscopy with high selectivity against other heavy metals. This method offers a new strategy for heavy metal detection using functionalized GNPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670m(2)/g), small diameter (120nm) and uniform pore size (2.5nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrically conductive elastic nanocomposites with well-organized graphene architectures offer significant improvement in various properties. However, achieving desirable graphene architectures in cross-linked rubber is challenging due to high viscosity and cross-linked nature of rubber matrices. Here, three dimensional (3D) interconnected graphene networks in natural rubber (NR) matrix are framed with self-assembly integrating latex compounding technology by employing electrostatic adsorption between poly(diallyldimethylammonium chloride) modified graphene (positively charged) and NR latex particles (negatively charged) as the driving force. The 3D graphene structure endows the resulted nanocomposites with excellent electrical conductivity of 7.31. S/m with a graphene content of 4.16. vol.%, extremely low percolation threshold of 0.21. vol.% and also analogous reinforcement in mechanical properties. The developed strategy will provide a practical approach for developing elastic nanocomposites with multi-functional properties. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel biodegradable pH- and salinity-responsive cellulose copolymer was prepared by grafting 2-(Dimethylamino) ethylmethacrylate (DMAEMA) onto bagasse cellulose in ionic liquid. The grafting polymerization was achieved in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) under microwave irradiation. Copolymers were then characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and thermo gravimetric analysis measurements. The results revealed that polymer chains had been successfully bonded to the cellulose backbone. Furthermore, the self-assembly of cellulose-g-DMAEMA copolymers at various salt concentrations and pH solution were investigated by means of swelling behavior measurement. It indicated that the copolymers presented dual pH and salinity-responsive properties. The synthetic strategy showed great potential in the modification of other cellulosic biomass to afford new biomaterials with desired properties. © 2014 Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supramolecular ionic networks combine singular properties such as self-healing behaviour and ionic conductivity. In this work we present an insight into the ionic conductivity and molecular dynamic behaviour of an amorphous and semicrystalline supramolecular ionic networks (iNets) that were synthesised by self-assembly of difunctional imidazolium dicationic molecules coupled with (trifluoromethane-sulfonyl) imide dianionic molecules. Relatively low ionic conductivity values were obtained for the semicrystalline iNet below its melting point (Tm =101°C) in comparison with the amorphous iNet for which the conductivity significantly increased (~3 orders of magnitude) above 100°C. Upon LiTFSI doping, the semicrystalline iNet reached conductivity values ~ 10-3 Scm-1 due to enhanced mobility of the network which was supported by solid-state static NMR. Furthermore, the overlapping of 19F and 7Li resonance lines from both the semicrystalline network and the LiTFSI suggests fast molecular motions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel cisplatin (CDDP)-loaded, polypeptide-based vesicles for the targeted delivery of cisplatin to cancer cells have been prepared. These vesicles were formed from biocompatible and biodegradable maleimide-poly(ethylene oxide)114-b-poly(L-glutamic acid)12 (Mal-PEG114-b-PLG12) block copolymers upon conjugation with the drug itself. CDDP conjugation forms a short, rigid, cross-linked, drug-loaded, hydrophobic block in the copolymer, and subsequently induces self-assembly into hollow vesicle structures with average hydrodynamic diameters (Dh) of ∼ 270 nm. CDDP conjugation is critical to the formation of the vesicles. The reactive maleimide-PEG moieties that form the corona and inner layer of the vesicles were protected via formation of a reversible Diels-Alder (DA) adduct throughout the block copolymer synthesis so as to maintain their integrity. Drug release studies demonstrated a low and sustained drug release profile in systemic conditions (pH = 7.4, [Cl(-)] = 140 mM) with a higher "burst-like" release rate being observed under late endosomal/lysosomal conditions (pH = 5.2, [Cl(-)] = 35 mM). Further, the peripheral maleimide functionalities on the vesicle corona were conjugated to thiol-functionalized folic acid (FA) (via in situ reduction of a novel bis-FA disulfide, FA-SS-FA) to form an active targeting drug delivery system. These targeting vesicles exhibited significantly higher cellular binding/uptake into and dose-dependent cytotoxicity toward cancer cells (HeLa) compared to noncancerous cells (NIH-3T3), which show high and low folic acid receptor (FR) expression, respectively. This work thus demonstrates a novel approach to polypeptide-based vesicle assembly and a promising strategy for targeted, effective CDDP anticancer drug delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The local inflammatory environment of the cell promotes the growth of epithelial cancers. Therefore, controlling inflammation locally using a material in a sustained, non-steroidal fashion can effectively kill malignant cells without significant damage to surrounding healthy cells. A promising class of materials for such applications are the nanostructured scaffolds formed by epitope containing minimalist self-assembled peptides (SAPs), as they are bioactive on a cellular length scale, whilst presenting as an easily handled hydrogel. Here, we show that the assembly process distributes an anti-inflammatory polysaccharide, fuccoidan, localised to the nanofibers to function as an anti-inflammatory biomaterial for cancer therapy. We show that it supports healthy cells, whilst inducing apoptosis in cancerous endothelial cells, as demonstrated by the downregulation of the proinflammatory gene and protein expression pathways associated with epithelial cancer progression. Our findings highlight an innovative material approach with potential applications as local epithelial cancer immunotherapy and drug delivery vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-cube-shaped lead zirconate titanate was synthesized using the microwave-assisted hydrothermal method. Photoluminescence and field emission scanning electron microscopy were used for monitoring the formation of mesocrystals. Based on these results, a growth mechanism was then proposed which involved nanoparticle aggregation, nanoplate self-assembly on specific architecture and the final formation of mesoscopic micro-cube-shaped lead zirconate titanate. (C) 2011 Elsevier B. V. All rights reserved.