993 resultados para Instrument variable regression
Harsanyi’s Social Aggregation Theorem : A Multi-Profile Approach with Variable-Population Extensions
Resumo:
This paper provides new versions of Harsanyi’s social aggregation theorem that are formulated in terms of prospects rather than lotteries. Strengthening an earlier result, fixed-population ex-ante utilitarianism is characterized in a multi-profile setting with fixed probabilities. In addition, we extend the social aggregation theorem to social-evaluation problems under uncertainty with a variable population and generalize our approach to uncertain alternatives, which consist of compound vectors of probability distributions and prospects.
Resumo:
It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.
Resumo:
We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.
Resumo:
This paper develops a model where the value of the monetary policy instrument is selected by a heterogenous committee engaged in a dynamic voting game. Committee members differ in their institutional power and, in certain states of nature, they also differ in their preferred instrument value. Preference heterogeneity and concern for the future interact to generate decisions that are dynamically ineffcient and inertial around the previously-agreed instrument value. This model endogenously generates autocorrelation in the policy variable and provides an explanation for the empirical observation that the nominal interest rate under the central bank’s control is infrequently adjusted.
Resumo:
Affiliation: Unité de recherche en Arthrose, Centre de recherche du Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame
Resumo:
Rapport de recherche
Resumo:
Rapport de recherche
Resumo:
Rapport de recherche