978 resultados para Inorganic drugs (Development)
Resumo:
Forty-five Large White gilts were used to study the effect of energy intake from 28 to 176 d of age on body composition and reproductive development. From 28 to 60 d, the gilts were fed ad libitum a 16.6 MJ DE/kg, 24% crude protein and 1.3% total lysine diet. From 61 d of age three dietary treatments were used; 1) ad libitum access to feed (15.6 MJ DE/kg, 21% crude protein and 1.07% total lysine) (H), 2) feed offered at 75% (M) of the previous days intake of H, and 3) feed offered at 60% (L) of the previous days intake of H. ADG from 61 to 176 d of age was (p <0.05) affected by treatment. Although live weight at 176 d of age did not differ (p >0.1) the H gilts had higher (p <0.08) carcass weights than the M or L gilts. Back fat depths were similar (p >0.1) for all treatments at 115 d of age, however by 176 d of age M and H gilts were fatter (p <0.1) than L gilts. The mean lipid deposition (LD) from 115 to 176 d of age for L gilts (78.9 g/d) was less (p <0.05) than for M gilts (143.6 g/d) and H gilts (135.6 g/d). There were no differences between treatments for protein deposition (PD) over the same period. More (p <0.05) H gilts (n=8) attained puberty (first observed estrus) than either M gilts or L gilts (n=4 for both). Follicle numbers were similar (p >0.1) across treatments. For gilts that attained puberty, H gilts had fewer (p <0.05) follicles (13.5) than M gilts (19.7) and L gilts (21.3). For gilts with follicular development, H gilts had the heaviest (458.7 g) reproductive tract weight (RTW). However, for those that attained puberty, L gilts had the heaviest RTW. RTW were lowest for those with no follicular development. Energy restriction had a negative impact on puberty attainment, i.e. it took longer to reach puberty. However, for gilts that attained puberty, the number of follicles was greater for those on lower feed intakes. It would appear that rate of fat deposition, but not necessarily the total amount of fat, plays an important role in puberty attainment.
Resumo:
SOX18 is a transcription factor that is transiently expressed in nascent endothelial cells during embryonic development and adult neovascularization. This protein belongs to the SOX family of transcription factors, ih,which are proving to be some of the key regulators of cell-type specification in the vertebrate embryo. Natural mutations in the Sox18 gene have been shown to result to cardiovascular dysfunction, in some cases leading to death. Available evidence thus implicates Sox18 as an important regulator of vascular development, most likely playing a key role in endothelial cell specification. However; the genetic knockout of Sox18 in mice has produced a confounding result that complicates our understanding of the molecular mode of action of the SOX18 protein. We speculate that Sox18 inky act in a redundant fashion with closely related genes such as Sox7 and/or Sox17. (C) 2001, Elsevier Science Inc.
Resumo:
The formation of testes or ovaries in the mammalian embryo is critical in determining sexual identity and the ability to reproduce. Recent studies have begun to illuminate the cellular signalling events required for development of functional testes. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Sry, a gene from the Y chromosome, is known to initiate testis formation and subsequent male differentiation in mammals. A related gene, Sox9, also plays a critical role in testis determination, possibly in all vertebrates. A number of models have been presented regarding the molecular modes of action of these two genes. However, details regarding their regulation, regulatory target genes, and interacting protein factors and co-factors have not been established with any certainty. In this review, we examine new evidence and re-examine existing evidence bearing on these issues, in an effort to build up an integrative model of the network of gene activity centred around Sry and Sox9. J. Exp. Zool. 290:463-474, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
To test the hypothesis that Vegf-B contributes to the pulmonary vascular remodelling, and the associated pulmonary hypertension, induced by exposure of mice to chronic hypoxia. Methods: Right ventricular systolic pressure, the ratio of right ventricle/[left ventricle+septum] (RV/[LV+S]) and the thickness of the media (relative to vessel diameter) of intralobar pulmonary arteries (o.d. 50-150 and 151-420 mum) were determined in Vegfb knockout mice (Vegfb(-/-); n=17) and corresponding wild-type mice (Vegfb(+/+); n=17) exposed to chronic hypoxia (10% oxygen) or housed in room air (normoxia) for 4 weeks. Results: In Vegfb(+/+) mice hypoxia caused (i) pulmonary hypertension (a 70% increase in right ventricular systolic pressure compared with normoxic Vegfb(+/+) mice; P
Resumo:
The role of nitrate, ammonium, and culture medium pH on shoot organogenesis in Nicotiana tabacum zz100 leaf discs was examined. The nitrogen composition of a basal liquid shoot induction medium (SIM) containing 39.4 mM NO3- and 20.6 mM NH4+ was altered whilst maintaining the overall ionic balance with Na+ and Cl- ions. Omission of total nitrogen and nitrate, but not ammonium, from SIM prevented the initiation and formation of shoots. When nitrate was used as the sole source of nitrogen, a high frequency of explants initiated and produced leafy shoots. However, the numbers of shoots produced were significantly fewer than the control SIM. Buffering nitrate-only media with the organic acid 2[N-morpholinol]thanesulphonic acid (MES) could not compensate for the omission of ammonium. Ammonium used as the sole source of nitrogen appeared to have a negative effect on explant growth and morphogenesis, with a significant lowering of media pH. Buffering ammonium-only media with MES stabilized pH and allowed a low frequency of explants to initiate shoot meristems. However, no further differentiation into leafy shoots was observed. The amount of available nitrogen appears to be less important than the ratio between nitrate and ammonium. Shoot formation was achieved with a wide range of ratios, but media containing 40 mM nitrate and 20 mM ammonium (70:30) produced the greatest number of shoots per explant. Results from this study indicate a synergistic effect between ammonium and nitrate on shoot organogenesis independent of culture medium pH.
Resumo:
This study focuses on characterizing the genetic and biological alterations associated with squamous cell carcinoma development. Normal human epidermal keratinocytes (HEKs), cells isolated from a preneoplastic lesion (IEC-1), and two neoplastic cell lines, SCC-25 and COLD-16, were grown as raft cultures, and their gene expression profiles were screened using cDNA arrays. Our data indicated that the expression levels of at least 37 genes were significantly (P less than or equal to 0.05; 1.9% of genes screened) altered in neoplastic cells compared with normal cells. Of these genes, 10 genes were up-regulated and 27 genes were down-regulated in the neoplastic cells. In addition, 51% of the genes altered in the neoplastic cells were already altered in the preneoplastic IEC-1 cells. Immunohistochemical staining of patient tumors was used to verify the cDNA array analysis. Our analysis indicated that alterations in genes associated with extracellular matrix production and apoptosis are disrupted in preneoplastic cells, whereas later stages of neoplasia are associated with alterations in gene expression for genes involved in DNA repair or epidermal growth factor (EGF) receptor/mitogen-activated protein kinase kinase (MAPKK)/MAPK/activator protein-1 (AP-1) signaling. Subsequent functional analysis of the alterations in expression of the EGF receptor/MAPKK/MAPK/AP-1 genes suggested they did not contribute to the neoplastic phenotype.
Resumo:
The past decade has seen the emergence of new pathways in the development of colorectal cancer. There is now clear evidence that subsets of these tumours do not show chromosomal instability and do not follow the suppressor pathway. Instead, about 15% of colorectal cancers are characterised by microsatellite instability (MSI). This feature arises through defective DNA mismatch repair, which is related either to a germline mutation (as in hereditary non-polyposis colorectal carcinoma) or to failure to express a mismatch-repair gene. CpG-island methylation has been linked to sporadic cancers with a high frequency of MSI. This type of methylation leads to loss of gene expression when it occurs in the promoter region of a gene. Tumours may have high or low type C (cancer-related) CpG-island methylation. When methylation affects hMLH1 (mismatch repair gene), the resultant cancer has high MSI.
Resumo:
POU-IV genes regulate neuronal development in a number of deuterostomes (chordates) and ecdysozoans (arthropods and nematodes). Currently their function and expression in the third bilaterian clade, the Lophotrochozoa, comprising molluscs, annelids and. their affiliates, is unclear. Herein we characterise the developmental expression of HasPOU-IV in the gastropod mollusc, Haliotis asinina. The POU-IV gene is transiently expressed in I I distinct larval territories during the first 3 days of development. HasPOU-IV is first expressed in sets of ventral epidermal cells in the newly hatched trochophore larvae. As larval morphogenesis proceeds, we observe HasPOU-IV transcripts in cells that putatively form a range of sensory systems including chemo- and mechanosensory cells in the foot, cephalic tentacles, the ctenidia. the geosensory statocyst and the eyes. By comparing HasPOU-IV expression with POU-IV genes in other bilaterians we infer that this class of POU-domain genes had an ancestral role in regulating sensory cell development.
Resumo:
In the marine environment a wide range of invertebrates have a pelagobenthic lifecycle that includes planktonic larval and benthic adult phases. Transition between these morphologically and ecologically distinct phases typically occurs when the developmentally competent larva comes into contact with a species-specific environmental cue. This cue acts as a morphogenetic signal that induces the completion of the postlarval/juvenile/adult developmental program at metamorphosis. The development of competence often occurs hours to days after the larva is morphologically mature. In the non-feeding - lecithotrophic - larvae of the ascidian Herdmania curvata and the gastropod mollusc Haliotis asinina, gene expression patterns in pre-competent and competent stages are markedly different, reflecting the different developmental states of these larval stages. For example, the expression of Hemps, an EGF-like signalling peptide required for the induction of Herdmania metamorphosis, increases in competent larvae. Induction of settlement and metamorphosis results in further changes in developmental gene expression, which apparently is necessary for the complete transformation of the larval body plan into the adult form.