971 resultados para Inflationary Universe
Resumo:
The present text has the objective of presenting theoretical considerations regarding two types of strategy of research: phenomenology and ethnography. Based on a hermeneutic approach, the two conceptual propositions are presented, the first being dealt with in the sociological context, and the second presented as an anthropological basis. Their similar uses in an organizational context - as well as their differences - are highligthed according to the theoretical contributions of authors belonging to the qualitative universe of organizational research. The text reveals, by the presentations of reported theoretical assumptions, the relevance of the interpretative perspective for the conduction of research that has the organization as object of study, in the pursuit of the identification of ways of constructing the social reality that is the result of the analysis of meanings and experiences lived by the participants, highlighting the importance of the bond between researcher and the research object The theoretical discussion regarding the two perspectives allows to observe the competence of the phenomenological and ethnographic research practice within the field of organizational studies, showing their methodological possibilities to identify dynamics that relate to the experience of life, favoring the analysis of the human being as a phenomenon of interpretation. © FECAP.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Early in its history, Earth's surface developed from an uninhabitable magma ocean to a place where life could emerge. The first organisms, lacking ion transporters, fixed the composition of their cradle environment in their intracellular fluid. Later, though life adapted and spread, it preserved some qualities of its initial environment within. Modern prokaryotes could thus provide insights into the conditions of early Earth and the requirements for the emergence of life. In this work, we constrain Earth's life-forming environment through detailed analysis of prokaryotic intracellular fluid. Rigorous assessment of the constraints placed on the early Earth environment by intracellular liquid will provide insight into the conditions of abiogenesis, with implications not only for our understanding of early Earth but also the formation of life elsewhere in the Universe. Copyright © 2013, Mary Ann Liebert, Inc. 2013.
Resumo:
Includes bibliography
Resumo:
A realistic model describing a black string-like object in an expanding Universe is analyzed in the context of the McVittie's solution of the Einstein field equations. The bulk metric near the brane is provided analogously to previous solutions for black strings. In particular, we show that at least when the Hubble parameter on the brane is positive, a black string-like object seems to play a fundamental role in the braneworld scenario, generalizing the standard black strings in the context of a dynamical brane. © 2013 Elsevier B.V.
Resumo:
A recently proposed scenario for baryogenesis, called post-sphaleron baryogenesis (PSB), is discussed within a class of quark-lepton unified framework based on the gauge symmetry SU(2)L×SU(2) R×SU(4)c realized in the multi-TeV scale. The baryon asymmetry of the Universe in this model is produced below the electroweak phase transition temperature after the sphalerons have decoupled from the Hubble expansion. These models embed naturally the seesaw mechanism for neutrino masses and predict color-sextet scalar particles in the TeV range which may be accessible to the LHC experiments. A necessary consequence of this scenario is the baryon-number-violating ΔB=2 process of neutron-antineutron (n-n̄) oscillations. In this paper we show that the constraints of PSB, when combined with the neutrino oscillation data and restrictions from flavor changing neutral currents mediated by the colored scalars, imply an upper limit on the n-n̄ oscillation time of 5×1010 sec regardless of the quark-lepton unification scale. If this scale is relatively low, in the (200-250) TeV range, τn-n̄ is predicted to be less than 1010 sec, which is accessible to the next generation of proposed experiments. © 2013 American Physical Society.
Resumo:
It has been proposed recently the existence of a non-minimal coupling between a canonical scalar field (quintessence) and gravity in the framework of teleparallel gravity, motivated by similar constructions in the context of General Relativity. The dynamics of the model, known as teleparallel dark energy, has been further developed, but no scaling attractor has been found. Here we consider a model in which the non-minimal coupling is ruled by a dynamically changing coefficient α≡f,φ/(f)1/2, with f(φ) an arbitrary function of the scalar field φ. It is shown that in this case the existence of scaling attractors is possible, which means that the universe will eventually enter these scaling attractors, regardless of the initial conditions. As a consequence, the cosmological coincidence problem could be alleviated without fine-tunings. © 2013 IOP Publishing Ltd and Sissa Medialab srl.
Resumo:
A detailed dynamical analysis of the tachyonic teleparallel dark energy model, in which a noncanonical scalar field (tachyon field) is nonminimally coupled to gravitation, is performed. It is found that, when the nonminimal coupling is ruled by a dynamically changing coefficient α≡f ,φ/√f, with f(φ) an arbitrary function of the scalar field φ, the Universe may experience a field-matter-dominated era φMDE, in which it has some portions of the energy density of φ in the matter dominated era. This is the most significant difference in relation to the so-called teleparallel dark energy scenario, in which a canonical scalar field (quintessence) is nonminimally coupled to gravitation. © 2013 American Physical Society.
Resumo:
We attempt to incorporate inflation into a string theory realization of the chameleon mechanism. Previously, it was found that the volume modulus, stabilized by the supersymmetric potential used by Kachru, Kallosh, Linde and Trivedi (KKLT) and with the right choice of parameters, can generically work as a chameleon. In this paper, we ask whether inflation can be realized in the same model. We find that we need a large extra dimensions set-up, as well as a semi-phenomenological deformation of the Kähler potential in the quantum region. We also find that an additional KKLT term is required so that there are now two pieces to the potential, one which drives inflation in the early universe, and one which is responsible for chameleon screening at late times. These two pieces of the potential are separated by a large flat desert in field space. The scalar field must dynamically traverse this desert between the end of inflation and today, and we find that this can indeed occur under the right conditions. © 2013 SISSA, Trieste, Italy.