989 resultados para Induced Response


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidative process of LDL particles generates molecules which are structurally similar to platelet-activating factor (PAF), and some effects of oxidized LDL (oxLDL) have been shown to be dependent on PAF receptor (PAFR) activation. In a previous study, we showed that PAFR is required for upregulation of CD36 and oxLDL uptake. In the present study we analyzed the molecular mechanisms activated by oxLDL in human macrophages and the contribution of PAFR to this response. Human adherent monocytes/macrophages were stimulated with oxLDL. Uptake of oxLDL and CD36 expression were determined by flow cytometry; MAP kinases and Akt phosphorylation by Western blot; IL-8 and MCP-1 concentration by ELISA and mRNA expression by real-time PCR. To investigate the participation of the PI3K/Akt pathway, G alpha i-coupled protein or PAFR, macrophages were treated with LY294002, pertussis toxin or with the PAFR antagonists WEB2170 and CV3988, respectively before addition of oxLDL. It was found that the addition of oxLDL to human monocytes/macrophages activates the PI3K/Akt pathway which in turn activates the MAPK (p38 and JNK). Phosphorylation of Akt requires the engagement of PAFR and a G alpha i-coupled protein. The upregulation of CD36 protein and the uptake of oxLDL as well as the IL-8 production are dependent on PI3K/Akt pathway activation. The increased CD36 protein expression is dependent on PAFR and G alpha i-coupled protein. Transfection studies using HEK 293t cells showed that oxLDL uptake occurs with either PAFR or CD36, but IL-8 production requires the co-transfection of both PAFR and CD36. These findings show that PAFR has a pivotal role in macrophages response to oxLDL and suggest that pharmacological intervention at the level of PAFR activation might be beneficial in atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucocorticoid deficiency is associated with a decrease of food intake. Orexigenic peptides, neuropeptide Y (NPY) and agouti related protein (AgRP), and the anorexigenic peptide proopiomelanocortin (POMC), expressed in the arcuate nucleus of the hypothalamus (ARC), are regulated by meal-induced signals. Orexigenic neuropeptides, melanin-concentrating hormone (MCH) and orexin, expressed in the lateral hypothalamic area (LHA), also control food intake. Thus, the present study was designed to test the hypothesis that glucocorticoids are required for changes in the expression of hypothalamic neuropeptides induced by feeding. Male Wistar rats (230-280 g) were subjected to ADX or sham surgery. ADX animals received 0.9% NaCl in the drinking water, and half of them received corticosterone in the drinking water (B: 25 mg/L, ADX + B). Six days after surgery, animals were fasted for 16 h and they were decapitated before or 2 h after refeeding for brain tissue and blood collections. Adrenalectomy decreased NPY/AgRP and POMC expression in the ARC in fasted and refed animals, respectively. Refeeding decreased NPY/AgRP and increased POMC mRNA expression in the ARC of sham and ADX + B groups, with no effects in ADX animals. The expression of MCH and orexin mRNA expression in the LHA was increased in ADX and ADX + B groups in fasted condition, however there was no effect of refeeding on the expression of MCH and orexin in the LHA in the three experimental groups. Refeeding increased plasma leptin and insulin levels in sham and ADX + B animals, with no changes in leptin concentrations in ADX group, and insulin response to feeding was lower in this group. Taken together, these data demonstrated that circulating glucocorticoids are required for meal-induced changes in NPY, AgRP and POMC mRNA expression in the ARC. The lower leptin and insulin responses to feeding may contribute to the altered hypothalamic neuropeptide expression after adrenalectomy. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute lung injury (ALI) develops in response to a direct insult to the lung or secondarily to a systemic inflammatory response, such as sepsis. There is clinical evidence that the incidence and severity of ALI induced by direct insult are lower in diabetics. In the present study we investigated whether the same occurs in ALI secondarily to sepsis and the molecular mechanisms involved. Diabetes was induced in male Wistar rats by alloxan and sepsis by caecal ligation and puncture surgery (CLP). Six hours later, the lungs were examined for oedema and cell infiltration in bronchoalveolar lavage. Alveolar macrophages (AMs) were cultured in vitro for analysis of I kappa B and p65 subunit of NF kappa B phosphorylation and MyD88 and SOCS-1 mRNA. Diabetic rats were more susceptible to sepsis than non-diabetics. In non-diabetic rats, the lung presented oedema, leukocyte infiltration and increased COX2 expression. In diabetic rats these inflammatory events were significantly less intense. To understand why diabetic rats despite being more susceptible to sepsis develop milder ALI, we examined the NF kappa B activation in AMs of animals with sepsis. Whereas in non-diabetic rats the phosphorylation of I kappa B and p65 subunit occurred after 6 h of sepsis induction, this did not occur in diabetics. Moreover, in AMs from diabetic rats the expression of MyD88 mRNA was lower and that of SOCS-1 mRNA was increased compared with AMs from non-diabetic rats. These results show that ALI secondary to sepsis is milder in diabetic rats and this correlates with impaired activation of NF kappa B, increased SOCS-1 and decreased MyD88 mRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The present study provides the first in vivo evidence that the cannabinoid CB1 receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB1 receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. 2. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB1 receptor. 3. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB1 receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. 4. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB1 receptor in the control of peripheral factors that modulate cardiovascular function. 5. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB1 receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamicpituitaryadrenal axis. 6. Collectively, the results of the present study indicate that the CB1 receptor modulates neurohypophyseal hormone secretion and systemic factors, such as corticosterone and ANP, thus participating in homeostatic responses to altered extracellular volume and plasma tonicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed laboratory experiments to investigate the sensitivity of the Spectral Induced Polarization (SIP) method to toluene contamination in clayey soils. We used mixtures of quartzitic sand and montmorillonite as soil samples, artificially contaminated with varying amounts of toluene. Care was taken to quantify the experimental uncertainty resulting from packing since such effects must be quantified if variations in SIP signatures between samples are to be reliably interpreted in terms of the effects of hydrocarbon concentration. The SIP response of all samples following addition of toluene was monitored for a period of 40 days following sample preparation. Stepwise regression was used to examine the statistical significance of correlations between (i) clay content and (ii) toluene concentration and SIP parameters. Both single-frequency real and imaginary conductivity measurements, along with the integral chargeability, normalized chargeability, DC conductivity and time constant obtained from a Debye decomposition fitting, were examined in this regression analysis. The SIP measurements show a clear time dependence following sample preparation, indicating that samples containing toluene may take significant time to reach an equilibrium electrical response. SIP measurements are significantly related to toluene content shortly after sample preparation, when the expected dependence of SIP on clay concentration is apparently suppressed. However, for the state of electrical equilibrium after 40 days (interpreted to indicate surface chemistry at equilibrium) there is no significant relation between SIP measurements and toluene content; instead SIP measurements are then significantly correlated with clay concentration. The total chargeability, normalized chargeability and relaxation time obtained from the Debye decomposition show no correlation with toluene content, indicating that this procedure, which likely integrates over multiple mechanisms, may not be suitable for understanding relationships between SIP and hydrocarbon contamination. We find only small low-frequency polarization signals observed in relation to toluene concentration (2 mrad at 0.01 Hz), which initially decreases the interfacial polarization. Unlike earlier works, our results do not support the use of the SIP method as a tool for monitoring toluene contamination in clay soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. The mechanisms underlying pleural inflammation and pleurodesis are poorly understood. We hypothesized that the cytokines transforming growth factor beta (TGF beta 1) and vascular endothelial growth factor (VEGF) play a major role in pleurodesis after intrapleural silver nitrate (SN) injection. Method. Forty rabbits received intrapleurally 0.5% SN alone or 0.5% SN + anti-TGF beta 1, anti-IL-8, or anti-VEGF. After 28 days, the animals were euthanized and macroscopic pleural adhesions, microscopic pleural fibrosis, and collagen deposition were analyzed for characterization of the degree of pleurodesis (scores 0-4). Results. Scores of pleural adhesions, pleural fibrosis, total collagen, and thin collagen fibers deposition after 28 days were significantly lower for 0.5% SN + anti-TGF beta 1 and 0.5% SN + anti-VEGF. Significant correlations were found between macroscopic adhesion and microscopic pleural fibrosis with total collagen and thin collagen fibers. Conclusions. We conclude that both TGF beta 1 and VEGF, but not IL-8, mediate the pleural inflammatory response and pleurodesis induced by SN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The sieve analysis for the Step trial found evidence that breakthrough HIV-1 sequences for MRKAd5/HIV-1 Gag/Pol/Nef vaccine recipients were more divergent from the vaccine insert than placebo sequences in regions with predicted epitopes. We linked the viral sequence data with immune response and acute viral load data to explore mechanisms for and consequences of the observed sieve effect. Methods: Ninety-one male participants (37 placebo and 54 vaccine recipients) were included; viral sequences were obtained at the time of HIV-1 diagnosis. T-cell responses were measured 4 weeks post-second vaccination and at the first or second week post-diagnosis. Acute viral load was obtained at RNA-positive and antibody-negative visits. Findings: Vaccine recipients had a greater magnitude of post-infection CD8+ T cell response than placebo recipients (median 1.68% vs 1.18%; p = 0.04) and greater breadth of post-infection response (median 4.5 vs 2; p = 0.06). Viral sequences for vaccine recipients were marginally more divergent from the insert than placebo sequences in regions of Nef targeted by pre-infection immune responses (p = 0.04; Pol p = 0.13; Gag p = 0.89). Magnitude and breadth of pre-infection responses did not correlate with distance of the viral sequence to the insert (p. 0.50). Acute log viral load trended lower in vaccine versus placebo recipients (estimated mean 4.7 vs 5.1) but the difference was not significant (p = 0.27). Neither was acute viral load associated with distance of the viral sequence to the insert (p>0.30). Interpretation: Despite evidence of anamnestic responses, the sieve effect was not well explained by available measures of T-cell immunogenicity. Sequence divergence from the vaccine was not significantly associated with acute viral load. While point estimates suggested weak vaccine suppression of viral load, the result was not significant and more viral load data would be needed to detect suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to herbivore attack, plants release herbivore-induced plant volatiles (HIPVs) that represent important chemical cues for herbivore natural enemies. Additionally, HIPVs have been shown to mediate other ecological interactions with herbivores. Differently from natural enemies that are generally attracted to HIPVs, herbivores can be either attracted or repelled depending on several biological and ecological parameters. Our study aimed to assess the olfactory response of fall armyworm-mated female moths toward odors released by mechanically and herbivore-induced corn at different time intervals. Results showed that female moths strongly respond to corn volatiles, although fresh damaged corn odors (0-1 h) are not recognized by moths. Moreover, females preferred volatiles released by undamaged plant over herbivore-induced plants at 5-6 h. This preference for undamaged plants may reflect an adaptive strategy of moths to avoid competitors and natural enemies for their offspring. We discussed our results based on knowledge about corn volatile release pattern and raise possible explanations for fall armyworm moth behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several pharmacological targets have been proposed as modulators of panic-like reactions. However, interest should be given to other potential therapeutic neurochemical agents. Recent attention has been given to the potential anxiolytic properties of cannabidiol, because of its complex actions on the endocannabinoid system together with its effects on other neurotransmitter systems. The aim of this study was to investigate the effects of cannabidiol on innate fear-related behaviors evoked by a prey vs predator paradigm. Male Swiss mice were submitted to habituation in an arena containing a burrow and subsequently pre-treated with intraperitoneal administrations of vehicle or cannabidiol. A constrictor snake was placed inside the arena, and defensive and non-defensive behaviors were recorded. Cannabidiol caused a clear anti-aversive effect, decreasing explosive escape and defensive immobility behaviors outside and inside the burrow. These results show that cannabidiol modulates defensive behaviors evoked by the presence of threatening stimuli, even in a potentially safe environment following a fear response, suggesting a panicolytic effect. Neuropsychopharmacology (2012) 37, 412-421; doi:10.1038/npp.2011.188; published online 14 September 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endothelial dysfunction has been implicated in portal vein obstruction, a condition responsible for major complications in chronic portal hypertension. Increased vascular tone due to disruption of endothelial function has been associated with an imbalance in the equilibrium between endothelium-derived relaxing and contracting factors. Herein, we assessed underlying mechanisms by which expression of bradykinin B-1 receptor (B1R) is induced in the endothelium and how its stimulation triggers vasoconstriction in the rat portal vein. Prolonged in vitro incubation of portal vein resulted in time- and endothelium-dependent expression of B1R and cyclooxygenase-2 (COX-2). Inhibition of protein kinase C (PKC) or phosphatidylinositol 3-kinase (PI3K) significantly reduced expression of B1R through the regulation of transcription factors, activator protein-1 (AP-1) and cAMP response element-binding protein (CREB). Moreover, pharmacological studies showed that B1R-mediated portal vein contraction was reduced by COX-2, but not COX-1, inhibitors. Notably, activation of endothelial B1R increased phospholipase A(2)/COX-2-derived thromboxane A(2) (TXA(2)) levels, which in turn mediated portal vein contraction through binding to TXA(2) receptors expressed in vascular smooth muscle cells. These results provide novel molecular mechanisms involved in the regulation of B1R expression and identify a critical role for the endothelial B1R in the modulation of portal vein vascular tone. Our study suggests a potential role for B1R antagonists as therapeutic tools for diseases where portal hypertension may be involved. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical evidence has identified the pulmonary circulation as an important target of air pollution. It was previously demonstrated that in vitro exposure to fine particulate matter (aerodynamic diameter <= 2.5 mu m, PM2.5) induces endothelial dysfunction in isolated pulmonary arteries. We aimed to investigate the effects of in vivo exposure to urban concentrated PM2.5 on rat pulmonary artery reactivity and the mechanisms involved. For this, adult Wistar rats were exposed to 2 weeks of concentrated Sao Paulo city air PM2.5 at an accumulated daily dose of approximately 600 mu g/m(3). Pulmonary arteries isolated from PM2.5-exposed animals exhibited impaired endothelium-dependent relaxation to acetylcholine without significant changes in nitric oxide donor response compared to control rats. PM2.5 caused vascular oxidative stress and enhanced protein expression of Cu/Zn- and Mn-superoxide dismutase in the pulmonary artery. Protein expression of endothelial nitric oxide synthase (eNOS) was reduced, while tumor necrosis factor (TNF)-alpha was enhanced by PM2.5 inhalation in pulmonary artery. There was a significant positive correlation between eNOS expression and maximal relaxation response (E-max) to acetylcholine. A negative correlation was found between vascular TNF-alpha expression and E-max to acetylcholine. Plasma cytokine levels, blood cells count and coagulation parameters were similar between control and PM2.5-exposed rats. The present findings showed that in vivo daily exposure to concentrated urban PM2.5 could decrease endothelium-dependent relaxation and eNOS expression on pulmonary arteries associated with local high TNF-alpha level but not systemic pro-inflammatory factors. Taken together, the present results elucidate the mechanisms underlying the trigger of cardiopulmonary diseases induced by urban ambient levels of PM2.5. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that endocannabinoids play an important role in the regulation of food intake and body weight. Endocannabinoids and cannabinoid receptors are found in the hypothalamus and brainstem, which are central areas involved in the control of food intake and energy expenditure. Activation of these areas is related to hypophagia observed during inflammatory stimulus. This study investigated the effects of cannabinoid (CB1) receptor blockade on lipopolysaccharide (LPS)-induced hypophagia. Male Wistar rats were pretreated with rimonabant (10 mg/kg, by gavage) or vehicle; 30 min later they received an injection of either LPS (100 mu g/kg, intraperitoneal) or saline. Food intake, body weight, corticosterone response, CRF and CART mRNA expression, Fos-CRF and Fos-alpha-MSH immunoreactivity in the hypothalamus and Fos-tyrosine hydroxylase (TH) immunoreactivity in the brainstem were evaluated. LPS administration decreased food intake and body weight gain and increased plasma corticosterone levels and CRF mRNA expression in the PVN. We also observed an increase in Fos-CRF and Fos-TH double-labeled neurons after LPS injection in vehicle-pretreated rats, with no changes in CART mRNA or Fos-alpha-MSH immunoreactive neurons in the ARC. In saline-treated animals, rimonabant pretreatment decreased food intake and body weight gain but did not modify hormone response or Fos expression in the hypothalamus and brainstem compared with vehicle-pretreated rats. Rimonabant pretreatment potentiated LPS-induced hypophagia, body weight loss and Fos-CRF and Fos-TH expressing neurons. Rimonabant did not modify corticosterone, CRF mRNA or Fos-alpha-MSH responses in rats treated with LPS. These data suggest that the endocannabinoid system, mediated by CB1 receptors, modulates hypothalamic and brainstem circuitry underlying the hypophagic effect during endotoxemia to prevent an exaggerated food intake decrease. This article is part of a Special Issue entitled 'Central Control of Food Intake'. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herbivore-attacked plants produce specific volatile substances that represent important cues for host finding by natural enemies. The fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a voracious herbivore and usually feed on maize in all periods of the day. Given that plant needs light to synthesize de novo herbivore-induced volatiles, volatile blend may be changed depending on time of the day the plant is induced, what could interfere in natural enemy foraging. In this sense, the current study aimed to investigate differential attractiveness of maize elicited by fall armyworm regurgitant under light and dark conditions to its specialist larval parasitoid Campoletis flavicincta (Ashmead) (Hymenoptera: Ichneumonidae). All bioassays were conducted in Y-tube olfactometer to assess parasitoid response to odors from undamaged maize, mechanical damage, and regurgitant-treated plants at 0-1, 5-6, and 24-25 h after induction. The results showed that na < ve wasps were attracted to volatiles emitted by nocturnal regurgitant-treated maize at 5-6 h, but not to odors from diurnal regurgitant-treated plants. The differential attractiveness is likely due to blend composition as nocturnal regurgitant-treated plants emit aromatic compounds and the homoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene in larger amounts than diurnal-treated plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription factor B lymphocyte induced maturation protein-1 (Blimp-1) plays important roles in embryonic development and immunity. Blimp-1 is required for the differentiation of plasma cells, and mice with T cell specific deletion of Blimp-1 (Blimp-1CKO mice) develop a fatal inflammatory response in the colon. Previous work demonstrated that lack of Blimp-1 in CD4(+) and CD8(+) T cells leads to intrinsic functional defects, but little is known about the functional role of Blimp-1 in regulating differentiation of Th cells in vivo and their contribution to the chronic intestinal inflammation observed in the Blimp1CKO mice. In this study, we show that Blimp-1 is required to restrain the production of the inflammatory cytokine IL-17 by Th cells in vivo. Blimp-1CKO mice have greater numbers of IL-17 producing TCR beta(+)CD4(+)cells in lymphoid organs and in the intestinal mucosa. The increase in IL-17 producing cells was not restored to normal levels in wild-type and Blimp-1CKO mixed bone marrow chimeric mice, suggesting an intrinsic role for Blimp-1 in constraining the production of IL-17 in vivo. The observation that Blimp-1 deficient CD4(+) T cells are more prone to differentiate into IL-17(+)/IFN-gamma(+) cells and cause severe colitis when transferred to Rag1-deficient mice provides further evidence that Blimp-1 represses IL-17 production. Analysis of Blimp-1 expression at the single cell level during Th differentiation reveals that Blimp-1 expression is induced in Th1 and Th2 but repressed by TGF-beta in Th17 cells. Collectively, the results described here establish a new role for Blimp-1 in regulating IL-17 production in vivo. The Journal of Immunology, 2012,189: 5682-5693.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melanoma cells express the platelet-activating factor receptor (PAFR) and, thus, respond to PAF, a bioactive lipid produced by both tumour cells and those in the tumour microenvironment such as macrophages. Here, we show that treatment of a human melanoma SKmel37 cell line with cisplatin led to increased expression of PAFR and its accumulation. In the presence of exogenous PAF, melanoma cells were significantly more resistant to cisplatin-induced cell death. Inhibition of PAFR-dependent signalling pathways by a PAFR antagonist (WEB2086) showed chemosensitisation of melanoma cells in vitro. Nude mice were inoculated with SKmel37 cells and treated with cisplatin and WEB2086. Animals treated with both agents showed significantly decreased tumour growth compared to the control group and groups treated with only one agent. PAFR accumulation and signalling are part of a prosurvival program of melanoma cells, therefore constituting a promising target for combination therapy for melanomas.